A357368
Triangle read by rows. Convolution triangle of the prime indicator sequence A089026.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 1, 10, 6, 1, 0, 5, 14, 21, 8, 1, 0, 1, 23, 47, 36, 10, 1, 0, 7, 28, 90, 108, 55, 12, 1, 0, 1, 49, 147, 258, 205, 78, 14, 1, 0, 1, 46, 249, 520, 595, 346, 105, 16, 1, 0, 1, 75, 360, 978, 1437, 1185, 539, 136, 18, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 1;
[3] 0, 3, 4, 1;
[4] 0, 1, 10, 6, 1;
[5] 0, 5, 14, 21, 8, 1;
[6] 0, 1, 23, 47, 36, 10, 1;
[7] 0, 7, 28, 90, 108, 55, 12, 1;
[8] 0, 1, 49, 147, 258, 205, 78, 14, 1;
[9] 0, 1, 46, 249, 520, 595, 346, 105, 16, 1;
-
PMatrix := proc(dim, a) local n, k, m, g, M, A;
if n = 0 then return [1] fi;
A := [seq(a(i), i = 1..dim-1)];
M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
for m from 2 to dim do
M[m, m] := M[m - 1, m - 1] * A[1];
for k from m-1 by -1 to 2 do
M[m, k] := add(A[i]*M[m-i, k-1], i = 1..m-k+1)
od od; M end:
a := n -> if isprime(n) then n else 1 fi: PMatrix(10, a);
# Alternatively, as the coefficients of row polynomials:
P := proc(n, x, a) option remember; ifelse(n = 0, 1,
x*add(a(n - k)*P(k, x, a), k = 0..n-1)) end:
Pcoeffs := proc(n, a) seq(coeff(P(n, x, a), x, k), k=0..n) end:
seq(Pcoeffs(n, a), n = 0..9);
# Alternatively, term by term:
T := proc(n, k, a) option remember; # Alois P. Heinz style
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, a(n)),
(q->add(T(j, q, a)*T(n-j, k-q, a), j=0..n))(iquo(k, 2)))) end:
seq(seq(T(n, k, a), k=0..n), n=0..9);
-
PMatrix[dim_, a_] := Module[{n, k, m, g, M, A}, If[n == 0, Return[1]]; A = Array[a, dim-1]; M = Array[0&, {dim, dim}]; M[[1, 1]] = 1; For[m = 2, m <= dim, m++, M[[m, m]] = M[[m-1, m-1]]*A[[1]]; For[k = m-1, k >= 2, k--, M[[m, k]] = Sum[A[[i]]*M[[m-i, k-1]], {i, 1, m-k+1}]]]; M];
a[n_] := If[PrimeQ[n], n, 1];
nmax = 10;
PM = PMatrix[nmax+1, a];
T[n_, k_] := PM[[n+1, k+1]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 21 2022 *)
-
def ConvTriangle(dim: int, a) -> list[list[int]]:
if callable(a): # Cache the input sequence.
A = [a(i) for i in range(1, dim)]
else:
A = a
print("In:", A)
C = [[0 for k in range(m + 1)] for m in range(dim)]
C[0][0] = 1
for m in range(1, dim):
C[m][m] = C[m - 1][m - 1] * A[0]
for k in range(m - 1, 0, -1):
C[m][k] = sum(A[i] * C[m - i - 1][k - 1] for i in range(m - k + 1))
return C
from sympy import isprime, flatten
def a(n): return n if isprime(n) else 1
print(flatten(ConvTriangle(10, a)))
A014342
Convolution of primes with themselves.
Original entry on oeis.org
4, 12, 29, 58, 111, 188, 305, 462, 679, 968, 1337, 1806, 2391, 3104, 3953, 4978, 6175, 7568, 9185, 11030, 13143, 15516, 18177, 21150, 24471, 28152, 32197, 36678, 41543, 46828, 52621, 58874, 65659, 73000, 80949, 89462, 98631, 108396, 118869, 130102, 142071
Offset: 1
a(2)=12 because a(2) = prime(1)*prime(2) + prime(2)*prime(1) = 2*3 + 3*2 = 12.
-
a014342 n = a014342_list !! (n-1)
a014342_list= f (tail a000040_list) [head a000040_list] 1 where
f (p:ps) qs k = sum (zipWith (*) qs $ reverse qs) :
f ps (p : qs) (k + 1)
-- Reinhard Zumkeller, Apr 07 2014, Mar 08 2012
-
[&+[NthPrime(n-i+1)*NthPrime(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
-
A014342:=n->add(ithprime(i)*ithprime(n+1-i), i=1..n): seq(A014342(n), n=1..50); # Wesley Ivan Hurt, Dec 14 2016
-
Table[Sum[Prime[i] Prime[n + 1 - i], {i, n}], {n, 40}] (* Michael De Vlieger, Dec 13 2016 *)
Table[With[{p=Prime[Range[n]]},ListConvolve[p,p]],{n,40}]//Flatten (* Harvey P. Dale, May 03 2018 *)
-
{m=40;u=vector(m,x,prime(x));for(n=1,m,v=vecextract(u,concat("1..",n)); w=vector(n,x,u[n+1-x]);print1(v*w~,","))} \\ Klaus Brockhaus, Apr 28 2004
-
from numpy import convolve
from sympy import prime, primerange
def aupton(terms):
p = list(primerange(2, prime(terms)+1))
return list(convolve(p, p))[:terms]
print(aupton(41)) # Michael S. Branicky, Apr 12 2021
More terms from Felix Goldberg (felixg(AT)tx.technion.ac.il), Feb 01 2001
A030018
Coefficients in 1/(1+P(x)), where P(x) is the generating function of the primes.
Original entry on oeis.org
1, -2, 1, -1, 2, -3, 7, -10, 13, -21, 26, -33, 53, -80, 127, -193, 254, -355, 527, -764, 1149, -1699, 2436, -3563, 5133, -7352, 10819, -15863, 23162, -33887, 48969, -70936, 103571, -150715, 219844, -320973, 466641, -679232, 988627, -1437185, 2094446, -3052743
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
-add(ithprime(n-i)*a(i), i=0..n-1))
end:
seq(a(n), n=0..70); # Alois P. Heinz, Jun 13 2018
-
max = 50; P[x_] := 1 + Sum[Prime[n]*x^n, {n, 1, max}]; s = Series[1/P[x], {x, 0, max}]; CoefficientList[s, x] (* Jean-François Alcover, Sep 24 2014 *)
-
v=[];for(n=1,50,v=concat(v,-prime(n)-sum(i=1,n-1,prime(i)*v[#v-i+1])));v \\ Derek Orr, Apr 28 2015
A030017
a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.
Original entry on oeis.org
1, 2, 7, 25, 88, 311, 1095, 3858, 13591, 47881, 168688, 594289, 2093693, 7376120, 25986209, 91549913, 322532092, 1136286727, 4003159847, 14103208628, 49685873471, 175044281583, 616684348614, 2172590743211, 7654078700221, 26965465508072, 94999850216565
Offset: 1
a(5) = 25*2 +7*3 +2*5 + 1*7 = 88.
-
a:= proc(n) option remember; `if`(n=1, 1,
add(a(n-i)*ithprime(i), i=1..n-1))
end:
seq(a(n), n=1..29); # Alois P. Heinz, Feb 10 2021
-
CoefficientList[ Series[ 1/(1 - Sum[ Prime[ n ]*x^n, {n, 1, 25} ] ), {x, 0, 25} ], x ]
(* Second program: *)
a[1] = 1; a[m_] := a[m] = Sum[Prime@ k a[m - k], {k, m - 1}]; Table[a@ n, {n, 25}] (* Michael De Vlieger, Dec 13 2016 *)
A030281
COMPOSE natural numbers with primes.
Original entry on oeis.org
2, 11, 53, 237, 1013, 4196, 16992, 67647, 265743, 1032827, 3979023, 15217248, 57835016, 218636365, 822691425, 3083074193, 11512489353, 42851360088, 159043175322, 588767623587, 2174488780469, 8013945343961, 29477541831841, 108233492257428, 396751988675780
Offset: 1
-
b:= proc(n) option remember; `if`(n=0, [1, 0], (p->
p+[0, p[1]])(add(ithprime(j)*b(n-j), j=1..n)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=1..27); # Alois P. Heinz, Sep 11 2019
-
b[n_] := b[n] = If[n==0, {1, 0}, #+{0, #[[1]]}&[Sum[Prime[j] b[n-j], {j, 1, n}]]];
a[n_] := b[n][[2]];
Array[a, 27] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)
A340990
a(n) is the (2n)-th term of the n-fold self-convolution of the primes.
Original entry on oeis.org
1, 3, 29, 291, 3121, 34123, 379853, 4280251, 48681569, 557686227, 6425630909, 74384480019, 864461820049, 10079577033243, 117859582680813, 1381492094548651, 16227770995740865, 190979248798795427, 2251327736286726749, 26579050506578504195, 314212180691846338801
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, ithprime(n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23);
-
b[n_, k_] := b[n, k] = If[k == 0, 1, If[k == 1, Prime[n + 1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n - j, k - q], {j, 0, n}]]]];
a[n_] := b[n, n];
a /@ Range[0, 23] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)
A014343
Three-fold convolution of primes with themselves.
Original entry on oeis.org
8, 36, 114, 291, 669, 1386, 2678, 4851, 8373, 13858, 22134, 34263, 51635, 75972, 109374, 154483, 214383, 292812, 394148, 523521, 686901, 891112, 1143936, 1454187, 1831973, 2288400, 2836044, 3488969, 4262541, 5173836, 6241612, 7486437, 8930649, 10598848
Offset: 0
-
Table[Sum[Prime[k + 1] Sum[Prime[i] Prime[# + 1 - i], {i, #}] &[n - k + 1], {k, 0, n}], {n, 0, 26}] (* Michael De Vlieger, Dec 13 2016 *)
A014344
Four-fold convolution of primes with themselves.
Original entry on oeis.org
16, 96, 376, 1160, 3121, 7532, 16754, 34796, 68339, 127952, 229956, 398688, 669781, 1094076, 1742710, 2713604, 4139111, 6195712, 9115304, 13199072, 18833449, 26509260, 36843322, 50603884, 68740107, 92414192, 123039628, 162323200, 212312453, 275448380
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1),
add(b(j, floor(k/2))*b(n-j, ceil(k/2)), j=0..n))
end:
a:= n-> b(n, 4):
seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2018
-
b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]], {j, 0, n}]];
a[n_] := b[n, 4];
a /@ Range[0, 35] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
-
my(N = 50, x = 'x + O('x^N)); Vec(((1/x)*sum(k=1, N, prime(k)*x^k))^4) \\ Michel Marcus, Mar 10 2018
Showing 1-8 of 8 results.
Comments