A340991
Triangle T(n,k) whose k-th column is the k-fold self-convolution of the primes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 2, 0, 3, 4, 0, 5, 12, 8, 0, 7, 29, 36, 16, 0, 11, 58, 114, 96, 32, 0, 13, 111, 291, 376, 240, 64, 0, 17, 188, 669, 1160, 1120, 576, 128, 0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256, 0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512, 0, 29, 679, 4851, 16754, 34123, 44652, 38416, 21248, 6912, 1024
Offset: 0
Triangle T(n,k) begins:
1;
0, 2;
0, 3, 4;
0, 5, 12, 8;
0, 7, 29, 36, 16;
0, 11, 58, 114, 96, 32;
0, 13, 111, 291, 376, 240, 64;
0, 17, 188, 669, 1160, 1120, 576, 128;
0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256;
0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512;
...
-
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, ithprime(n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
# Uses function PMatrix from A357368.
PMatrix(10, ithprime); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, Prime[n]], With[{q = Quotient[k, 2]},
Sum[T[j, q] T[n - j, k - q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)
A300662
Expansion of 1/(1 - x - Sum_{k>=2} prime(k-1)*x^k).
Original entry on oeis.org
1, 1, 3, 8, 22, 59, 160, 429, 1155, 3105, 8354, 22474, 60457, 162636, 437509, 1176941, 3166097, 8517138, 22912002, 61635707, 165806564, 446037175, 1199887133, 3227823181, 8683185454, 23358686444, 62837334885, 169039070970, 454732963567, 1223279724439, 3290751724917
Offset: 0
Cf.
A000040,
A008578,
A023626,
A030011,
A030012,
A030013,
A030014,
A030015,
A030016,
A030017,
A030018,
A292744,
A300632.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=1, 1, ithprime(j-1))*a(n-j), j=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2018
-
nmax = 30; CoefficientList[Series[1/(1 - x - Sum[Prime[k - 1] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
p[1] = 1; p[n_] := p[n] = Prime[n - 1]; a[n_] := a[n] = Sum[p[k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]
A225127
Convolutory inverse of the nonprimes.
Original entry on oeis.org
1, -4, 10, -24, 59, -146, 360, -886, 2182, -5376, 13244, -32624, 80364, -197968, 487672, -1201319, 2959297, -7289859, 17957662, -44236464, 108971015, -268436517, 661259918, -1628931424, 4012669610, -9884711639, 24349755585, -59982589144, 147759635098
Offset: 1
(1,4,6,8,9,...)**(1,-4,10,-24,59,...) = (1,0,0,0,0,...), where ** denotes convolution.
-
z = 1000; c = Complement[Range[z], Prime[Range[PrimePi[z]]]]; r[n_] := r[n] = c[[n]]; k[n_] := k[n] = 0; k[1] = 1; a[n_] := a[n] = (k[n] - Sum[r[i]*a[n - i + 1], {i, 2, n}])/r[1]; t = Table[a[n], {n, 1, 40}] (* A225127 *)
A305882
-1 + Product_{n>=1} 1/(1 + a(n)*x^n) = g.f. of A000040 (prime numbers).
Original entry on oeis.org
-2, 1, 1, 4, 4, 13, 16, 44, 52, 112, 182, 411, 620, 1318, 2142, 5148, 7676, 15228, 27530, 58660, 98372, 207392, 364464, 763263, 1341508, 2773990, 4923220, 10470948, 18510902, 37546152, 69269976, 148419094, 258284232, 534761242, 981480012, 2004302204
Offset: 1
1/((1 - 2*x) * (1 + x^2) * (1 + x^3) * (1 + 4*x^4) * (1 + 4*x^5) * ... * (1 + a(n)*x^n) * ...) = 1 + 2*x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + ... + A000040(k)*x^k + ...
A225128
Numerators of the convolutory inverse of the primes of the form 4m+3.
Original entry on oeis.org
1, -7, 16, -52, 412, -2068, 6964, -19960, 81880, -396844, 1448908, -3853348, 9668860, -45544768, 238303744, -764868256, 1962327904, -9820441204, 62744531956, -306405293056, 1228176071080, -5276516025688, 26307346186816, -126143746044604, 534479888324932
Offset: 1
(3,7,11,19,23,...)**(1/3, -7/9, 16/27, -52/81, 412/243,...) = (1,0,0,0,0,...), where ** denotes convolution.
-
q = {}; Do[If[PrimeQ[p = 4*n + 3], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]
A225129
Numerators of the convolutory inverse of the primes of the form 4m+1.
Original entry on oeis.org
1, -13, 84, -712, 6916, -55788, 432584, -3555212, 28927916, -229458788, 1847086584, -14858027212, 118242773916, -945499611788, 7556178053084, -60048635124212, 477995366994916, -3810212526827288, 30296614848644584, -240796293647346212, 1916211884628153416
Offset: 1
(5,13,17,29,37,...)**(1/5, -13/25, 84/125, -712/625, 6916/3125,...) = (1,0,0,0,0,...), where ** denotes convolution.
-
q = {}; Do[If[PrimeQ[p = 4*n + 1], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]
A225130
Numerators of the convolutory inverse of the primes of the form 6m-1.
Original entry on oeis.org
1, -11, 36, -36, 36, -3786, 63786, -405036, 1215036, -4368786, 45022536, -380988786, 2242736286, -7681046286, 26949825036, -435049072536, 4543990507536, -25626723348786, 80068989783786, -100028016375036, 1579550678122536, -31186023693776286, 252408733196148786
Offset: 1
(5,11,17,23,29,...)**(1/5, -11/25, 36/125, -36/625, 36/3125,...) = (1,0,0,0,0,...), where ** denotes convolution.
-
q = {}; Do[If[PrimeQ[p = 6*n - 1], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]
A225131
Numerators of the convolutory inverse of the primes of the form 6m+1.
Original entry on oeis.org
1, -13, 36, -258, 5622, -31716, -83460, 1766388, -2952900, 59171652, -2614259136, 25907667528, -87008484996, 410147565360, -10353918172170, 73320103253412, 409638469731702, -7210516315882284, 18236866211886120, -161388385633551558, 6594430509454957926
Offset: 1
(7,13,19,31,37,...)**(1/7, -13/49, 36/343, -258/2401, 5622/16807,...) = (1,0,0,0,0,...), where ** denotes convolution.
-
q = {}; Do[If[PrimeQ[p = 6*n - 1], AppendTo[q, p]], {n, 0, 15000}]; r[n_] := q[[n]]; k[n_] := k[n] = 0; k[1] = 1; s[n_] := s[n] = (k[n] - Sum[r[k]*s[n - k + 1], {k, 2, n}])/r[1]; t = Table[s[n], {n, 1, 40}]; Numerator[t]
A307898
Expansion of 1/(1 - x * Sum_{k>=1} prime(k)*x^k).
Original entry on oeis.org
1, 0, 2, 3, 9, 19, 48, 107, 258, 594, 1405, 3277, 7693, 18004, 42203, 98834, 231592, 542497, 1271003, 2977529, 6975674, 16342011, 38285178, 89691782, 210124363, 492265243, 1153247379, 2701752062, 6329489153, 14828313076, 34738805240, 81383803849, 190660665579, 446667359857, 1046423138962
Offset: 0
-
nmax = 34; CoefficientList[Series[1/(1 - x Sum[Prime[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Prime[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 34}]
A307899
Expansion of 1/(1 + x * Sum_{k>=1} prime(k)*x^k).
Original entry on oeis.org
1, 0, -2, -3, -1, 5, 10, 9, -4, -26, -43, -33, 35, 148, 219, 98, -316, -857, -983, 23, 2296, 4501, 3712, -2906, -14257, -21771, -10811, 28282, 81209, 97292, 7960, -207185, -431595, -386033, 219344, 1322141, 2134126, 1226554, -2443765, -7684081, -9726127, -1791806, 18712361, 41428590, 39753658
Offset: 0
-
nmax = 44; CoefficientList[Series[1/(1 + x Sum[Prime[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = -Sum[Prime[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 44}]
Showing 1-10 of 20 results.
Comments