cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A348128 Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} x^prime(n).

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 1, 0, -1, -1, 2, 1, 0, -2, 0, 1, 3, -2, -1, 0, 4, 0, -1, -4, 6, 2, 2, -10, 4, 4, 13, -15, -7, -2, 30, -7, -7, -33, 42, 8, 16, -70, 27, 22, 95, -116, -21, -39, 223, -61, -48, -261, 326, 51, 129, -581, 242, 109, 752, -932, -105, -330, 1806, -612, -240, -2140, 2750, 227, 1245, -4865
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 01 2021

Keywords

Crossrefs

A305881 Expansion of Product_{k>=1} 1/(1 + prime(k)*x^k).

Original entry on oeis.org

1, -2, 1, -7, 16, -28, 62, -118, 303, -630, 1152, -2426, 5315, -10718, 20482, -43449, 91111, -179254, 358910, -727829, 1484601, -2995681, 5924606, -11935441, 24382120, -48702245, 96682698, -195063604, 392983826, -784903199, 1569490057, -3146479152, 6317124649, -12652202092
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 13 2018

Keywords

Comments

Convolution inverse of A147655.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*ithprime(i))))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i$2)*a(i$2), i=0..n-1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 13 2018
  • Mathematica
    nmax = 33; CoefficientList[Series[Product[1/(1 + Prime[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[Exp[Sum[Sum[(-1)^k Prime[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (-Prime[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^k*prime(j)^k*x^(j*k)/k).

A348127 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} x^prime(n).

Original entry on oeis.org

0, 1, 1, -1, 0, -1, 1, -1, -1, -1, 2, 0, 0, -3, 0, 0, 3, -3, -1, -1, 4, -4, -1, -5, 6, 2, 2, -17, 4, 4, 13, -16, -7, -11, 30, -14, -7, -34, 42, 7, 16, -80, 27, 6, 95, -117, -21, -60, 223, -97, -48, -265, 326, 53, 129, -800, 242, 93, 752, -948, -105, -499, 1806, -853, -240, -2189, 2750, 124
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 01 2021

Keywords

Crossrefs

Programs

  • Maple
    N:= 20: # for a(1)..a(N)
    P:= 1: a:= Vector(N):
    for n from 1 to N do
      c:= coeff(P,x,n);
      if isprime(n) then a[n]:= 1-c  else a[n]:= -c fi;
      P:= series(P/(1-a[n]*x^n),x,N+1);
    od:
    convert(a,list); # Robert Israel, Mar 01 2022

A353950 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} prime(n+1)*x^n.

Original entry on oeis.org

3, -4, -8, -26, -52, -126, -320, -1214, -2016, -7068, -16064, -48142, -122552, -390574, -903176, -3549556, -7597004, -22902332, -61172890, -198872948, -486889660, -1555059566, -4093173788, -12448334478, -33815484714, -105268420776, -279683446078, -894795490384, -2366564864546
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, Prime[n + 1], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 29]

A353951 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + x + Sum_{n>=2} prime(n-1)*x^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, -1, -2, -3, -2, 4, -1, 5, 2, -4, -8, -9, -3, -3, 12, 19, -6, 6, -38, -27, -32, 13, 56, 50, 99, -49, -135, -162, -258, 83, 114, 468, 359, -40, -390, -1215, -791, -526, 876, 2640, 1816, 1673, -3404, -4516, -6527, -3640, 5320, 9282, 18019, 7210
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, If[n == 1, 1, Prime[n - 1]], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 55]
Showing 1-5 of 5 results.