cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030057 Least number that is not a sum of distinct divisors of n.

Original entry on oeis.org

2, 4, 2, 8, 2, 13, 2, 16, 2, 4, 2, 29, 2, 4, 2, 32, 2, 40, 2, 43, 2, 4, 2, 61, 2, 4, 2, 57, 2, 73, 2, 64, 2, 4, 2, 92, 2, 4, 2, 91, 2, 97, 2, 8, 2, 4, 2, 125, 2, 4, 2, 8, 2, 121, 2, 121, 2, 4, 2, 169, 2, 4, 2, 128, 2, 145, 2, 8, 2, 4, 2, 196, 2, 4, 2, 8, 2, 169, 2, 187, 2, 4, 2, 225, 2, 4, 2, 181
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 if and only if n is odd. a(2^n) = 2^(n+1). - Emeric Deutsch, Aug 07 2005
a(n) > n if and only if n belongs to A005153, and then a(n) = sigma(n) + 1. - Michel Marcus, Oct 18 2013
The most frequent values are 2 (50%), 4 (16.7%), 8 (5.7%), 13 (3.2%), 16 (2.4%), 29 (1.3%), 32 (1%), 40, 43, 61, ... - M. F. Hasler, Apr 06 2014
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020

Examples

			a(10)=4 because 4 is the least positive integer that is not a sum of distinct divisors (namely 1,2,5 and 10) of 10.
		

Crossrefs

Distinct elements form A030058.
Cf. A027750.

Programs

  • Haskell
    a030057 n = head $ filter ((== 0) . p (a027750_row n)) [1..] where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) x = if x < k then 0 else p ks (x - k) + p ks x
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Maple
    with(combinat): with(numtheory): for n from 1 to 100 do div:=powerset(divisors(n)): b[n]:=sort({seq(sum(div[i][j],j=1..nops(div[i])),i=1..nops(div))}) od: for n from 1 to 100 do B[n]:={seq(k,k=0..1+sigma(n))} minus b[n] od: seq(B[n][1],n=1..100); # Emeric Deutsch, Aug 07 2005
  • Mathematica
    a[n_] :=  First[ Complement[ Range[ DivisorSigma[1, n] + 1], Total /@ Subsets[ Divisors[n]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 02 2012 *)
  • Python
    from sympy import divisors
    def A030057(n):
        c = {0}
        for d in divisors(n,generator=True):
            c |=  {a+d for a in c}
        k = 1
        while k in c:
            k += 1
        return k # Chai Wah Wu, Jul 05 2023

Extensions

Edited by N. J. A. Sloane, May 05 2007