A129092 a(n) = A030067(2^n - 1) for n >= 1, where A030067 is the semi-Fibonacci numbers.
1, 2, 5, 16, 69, 430, 4137, 64436, 1676353, 74555322, 5777029421, 792086153688, 194591768192733, 86534148901444102, 70244955881077121873, 104827174339054175240700, 289320796542222620694103961
Offset: 1
Keywords
Examples
The semi-Fibonacci sequence (A030067) starts: [(1), 1, (2), 1, 3, 2, (5), 1, 6, 3, 9, 2, 11, 5, (16), 1, ...], and obeys the recurrence: A030067(n) = A030067(n/2) when n is even; and A030067(n) = A030067(n-1) + A030067(n-2) when n is odd. This sequence also equals row sums of triangle A129100: 1; 1, 1; 2, 2, 1; 5, 6, 4, 1; 16, 24, 20, 8, 1; 69, 136, 136, 72, 16, 1; 430, 1162, 1360, 880, 272, 32, 1; ... where columns of A129100 shift left under matrix square, so that A129100^2 starts: 1; 2, 1; 6, 4, 1; 24, 20, 8, 1; 136, 136, 72, 16, 1; 1162, 1360, 880, 272, 32, 1; ...
Programs
-
PARI
/* Generated as column 0 of triangle A129100: */ a(n)=local(A=Mat(1),B);for(m=1,n+1,B=matrix(m,m);for(r=1,m,for(c=1,r, if(r==c || r==1 || r==2,B[r,c]=1,if(c==1,B[r,1]=sum(i=1,r-1,A[r-1,i]), B[r,c]=(A^(2^(c-1)))[r-c+1,1])); )); A=B); return(A[n+1,1])
Comments