cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030112 Number of distributive lattices; also number of paths with n turns when light is reflected from 8 glass plates.

Original entry on oeis.org

1, 8, 36, 204, 1086, 5916, 31998, 173502, 940005, 5094220, 27604798, 149590922, 810627389, 4392774126, 23804329059, 128995094597, 699021261776, 3787979292364, 20526967746120, 111235140046330, 602780523265720, 3266453022809170, 17700829632401740, 95920366069513405
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(8) be the 8 X 8 matrix (0,0,0,0,0,0,0,1)/(0,0,0,0,0,0,1,1)/(0,0,0,0,0,1,1,1)/(0,0,0,0,1,1,1,1)/(0,0,0,1,1,1,1,1)/(0,0,1,1,1,1,1,1)/(0,1,1,1,1,1,1,1)/(1,1,1,1,1,1,1,1) and let v(8) be the vector (1,1,1,1,1,1,1,1); then v(8)*M(8)^n = (x,y,z,t,u,v, w,a(n)). - Benoit Cloitre, Sep 29 2002
For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k)=(1/2)/cos(k*Pi/(2k+1)) and it is conjectured that z(k) is the root 1Benoit Cloitre, Oct 16 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • Magma
    I:=[1, 8, 36, 204, 1086, 5916, 31998, 173502]; [n le 8 select I[n] else 4*Self(n-1)+10*Self(n-2)-10*Self(n-3)-15*Self(n-4)+6*Self(n-5)+7*Self(n-6)-Self(n-7)-Self(n-8):  n in [1..25]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    nmax:=20: with(LinearAlgebra): M:=Matrix([[0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,1,1,1], [0,0,0,0,1,1,1,1], [0,0,0,1,1,1,1,1], [0,0,1,1,1,1,1,1], [0,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1]]): v:= Vector[row]([1,1,1,1,1,1,1,1]): for n from 0 to nmax do b:=evalm(v&*M^n): a(n):=b[8] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x-x^2)*(1+4*x-4*x^2-x^3+x^4)/(1-4*x-10*x^2+10*x^3+15*x^4-6*x^5-7*x^6+x^7+x^8),{x,0,30}],x] (* Vincenzo Librandi, Apr 22 2012 *)
  • PARI
    k=8; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    

Formula

a(n) = 4*a(n-1)+ 10*a(n-2)-10*a(n-3)-15*a(n-4)+ 6*a(n-5)+7*a(n-6)-a(n-7)-a(n-8). - Benoit Cloitre, Oct 09 2002
a(n) is asymptotic to z(8)*w(8)^n where w(8)=(1/2)/cos(8*Pi/17) and z(8) is the root 1Benoit Cloitre, Oct 16 2002
G.f.: (1+x)*(1-x-x^2)*(1+4*x-4*x^2-x^3+x^4)/(1-4*x-10*x^2+10*x^3+15*x^4-6*x^5-7*x^6+x^7+x^8). - Colin Barker, Mar 31 2012

Extensions

More terms from Benoit Cloitre, Sep 29 2002
Comment corrected by Johannes W. Meijer, Aug 03 2011