A030114 Number of distributive lattices; also number of paths with n turns when light is reflected from 10 glass plates.
1, 10, 55, 385, 2530, 17017, 113641, 760804, 5089282, 34053437, 227837533, 1524414737, 10199443436, 68241935348, 456589252304, 3054922560820, 20439707165252, 136756870048981, 915005341022187, 6122067418010887, 40961191948244094, 274060890253820561
Offset: 0
References
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Index entries for linear recurrences with constant coefficients, signature (5,15,-20,-35,21,28,-8,-9,1,1).
Programs
-
Mathematica
CoefficientList[Series[-(x^9 + x^8 - 8 x^7 - 7 x^6 + 21 x^5 + 15 x^4 - 20 x^3 - 10 x^2 + 5 x + 1)/((x + 1) (x^3 + x^2 - 2 x - 1) (x^6 - x^5 - 6 x^4 + 6 x^3 8 x^2 - 8 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)
-
PARI
k=10; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
Formula
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))))))) = -(x^9 +x^8 -8*x^7 -7*x^6 +21*x^5 +15*x^4 -20*x^3 -10*x^2 +5*x +1)/((x +1)*(x^3 +x^2 -2*x -1)*(x^6 -x^5 -6*x^4 +6*x^3 +8*x^2 -8*x +1)). [Colin Barker, Nov 09 2012]
Extensions
More terms from Benoit Cloitre, Sep 29 2002
a(20)-a(21) from Vincenzo Librandi, Oct 19 2013
Comments