A030152 Squares in which parity of digits alternates.
0, 1, 4, 9, 16, 25, 36, 49, 81, 121, 169, 256, 361, 529, 676, 729, 961, 1296, 4761, 5476, 6561, 7056, 9216, 12321, 12769, 14161, 16129, 18769, 32761, 34969, 41616, 56169, 69696, 72361, 74529, 76729, 78961, 87616, 96721, 147456, 163216, 181476, 212521
Offset: 1
Examples
1296 is a term as 1, 2, 9 and 6 have odd and even parity alternately.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
Crossrefs
Programs
-
Haskell
a030152 n = a030152_list !! (n-1) a030152_list = filter ((== 1) . a228710) a000290_list -- Reinhard Zumkeller, Aug 31 2013
-
Maple
i := 0:for a from 1 to 1000 do b := a^2:g := ceil(log(b+1)/log(10)):iss := true:for j from 1 to g-1 do if((b mod 2)=1) then if((floor(b/10^j) mod 2)=((-1)^(j+1)+1)/2) then iss := false:end if:else if((floor(b/10^j) mod 2)=((-1)^j+1)/2) then iss := false:end if:end if:end do: if(iss=true) then i := i+1:c[i] := b:end if:end do:q := seq(c[k],k=1..i-1); # Sascha Kurz, Mar 23 2002
-
Mathematica
altQ[n_] := n < 10 || Union[Total /@ Partition[ Mod[ IntegerDigits@n, 2], 2, 1]] == {1}; Select[ Range[0, 500]^2, altQ[#] &] (* Giovanni Resta, Aug 16 2018 *)
Formula
Extensions
Edited by N. J. A. Sloane, Aug 31 2009 at the suggestion of R. J. Mathar
Offset corrected by Reinhard Zumkeller, Aug 31 2013