A030190 Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose.
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0
Offset: 0
Examples
As an array, this begins: 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, ...
References
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jean Berstel, Home Page (in case the following link should be broken)
- Jean Berstel and Juhani Karhumäki, Combinatorics on words-a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, # 79, pp. 178-228, 2003.
- S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
- Eric Weisstein's World of Mathematics, Binary Champernowne Constant
- Index entries for transcendental numbers.
Crossrefs
Cf. A007376, A003137, A030308. Same as and more fundamental than A030302, but I have left A030302 in the OEIS because there are several sequences that are based on it (A030303 etc.). - N. J. A. Sloane.
Tables in which the n-th row lists the base b digits of n: this sequence and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
A076478 is a similar sequence.
Programs
-
Haskell
import Data.List (unfoldr) a030190 n = a030190_list !! n a030190_list = concatMap reverse a030308_tabf -- Reinhard Zumkeller, Jun 16 2012, Dec 11 2011
-
Magma
[0]cat &cat[Reverse(IntegerToSequence(n,2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
-
Mathematica
Flatten[ Table[ IntegerDigits[n, 2], {n, 0, 26}]] (* Robert G. Wilson v, Mar 08 2005 *) First[RealDigits[ChampernowneNumber[2], 2, 100, 0]] (* Paolo Xausa, Jun 16 2024 *)
-
PARI
A030190_row(n)=if(n,binary(n),[0]) \\ M. F. Hasler, Oct 12 2020
-
Python
from itertools import count, islice def A030190_gen(): return (int(d) for m in count(0) for d in bin(m)[2:]) A030190_list = list(islice(A030190_gen(),30)) # Chai Wah Wu, Jan 07 2022
Comments