cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365689 Final decimal digit of n^((n+1)^(n+2)) = A030198(n).

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6, 1, 8, 1, 0, 1, 2, 1, 4, 5, 6
Offset: 0

Views

Author

Marco Ripà, Sep 16 2023

Keywords

Comments

Period 10, repeat: [0, 1, 2, 1, 4, 5, 6, 1, 8, 1].

Examples

			For n = 2, a(2) = 2417851639229258349412352 mod 10 = 2.
		

Crossrefs

Cf. A030198, A103562, A120962, A365689 (initial digit).

Programs

  • Mathematica
    PadRight[{},100,{0,1,2,1,4,5,6,1,8,1}] (* Paolo Xausa, Oct 16 2023 *)
  • PARI
    a(n) = lift(Mod(n, 10)^((n+1)^(n+2))); \\ Michel Marcus, Sep 16 2023
    
  • Python
    def A365689(n): return pow(n,(n+1)**(n+2),10) # Chai Wah Wu, Sep 22 2023

Formula

a(n) = n^((n+1)^(n+2)) mod 10.
a(n) = A103562(n) for n >= 4 (as 3^(2^1) == 9 (mod 10) instead of 1).
G.f.: x*(x^8+8*x^7+x^6+6*x^5+5*x^4+4*x^3+x^2+2*x+1)/(1-x^10). - Alois P. Heinz, Apr 18 2025

A364271 Initial digit of n^((n + 1)^(n + 2)).

Original entry on oeis.org

0, 1, 2, 3, 1, 7, 1, 7, 2, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2, 2, 4, 5, 1, 7, 3, 2, 4, 1, 2, 6, 2, 1, 2, 2, 1, 8, 1, 6, 1, 5, 2, 8, 8, 3, 9, 3, 4, 2, 4, 3, 1, 6, 2, 1, 6, 6, 9, 1, 9, 2, 5, 2, 9, 9, 6, 8, 4, 2, 7, 7, 6, 1, 2, 2, 3, 1, 2, 6, 1, 1, 6, 1, 1, 2, 3, 5, 1
Offset: 0

Views

Author

Marco Ripà, Oct 20 2023

Keywords

Examples

			a(2) = 2, since 2^((2 + 1)^(2 + 2)) = 2417851639229258349412352.
		

Crossrefs

Cf. A000030, A030198, A365689 (final digit).

Programs

  • C
    /* See links */
  • Mathematica
    Join[{0}, Table[Floor[n^((n+1)^(n+2))/10^Floor[Log10[n^((n+1)^(n+2))]]], {n, 86}]]

Formula

a(n) = floor(t / 10^floor(log_10(t))) where t = n^((n + 1)^(n + 2)).
a(n) = A000030(A030198(n)).

Extensions

More terms from Kevin Ryde, Oct 27 2023
Showing 1-2 of 2 results.