cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030236 Cycle-path coverings of a family of digraphs.

Original entry on oeis.org

1, 2, 7, 18, 49, 136, 377, 1044, 2891, 8006, 22171, 61398, 170029, 470860, 1303949, 3611016, 9999959, 27692810, 76689487, 212375610, 588130153, 1628704336, 4510358465, 12490501212, 34589849507, 95789405774, 265268869027
Offset: 0

Views

Author

Ottavio D'Antona (dantona(AT)dsi.unimi.it) and Emanuele Munarini

Keywords

Crossrefs

Cf. A030186.

Programs

  • GAP
    a:=[2,7,18];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-2]+a[n-3]; od; Concatenation([1],a); # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    seq(coeff(series((1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 27 2019
  • Mathematica
    LinearRecurrence[{3,-1,1}, {1,2,7,18}, 40] (* G. C. Greubel, Oct 27 2019 *)
  • Maxima
    makelist(sum(binomial(n+k+1,3*k+1)*2^k, k,0,n) + 2*sum(2^k* binomial(n+k-1,3*k+1), k,0,n-1), n,0,60); /* Emanuele Munarini, Dec 03 2012 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3)) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A030236_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3) ).list()
    A030236_list(40) # G. C. Greubel, Oct 27 2019
    

Formula

a(n+4) = 3*a(n+3) - a(n+2) + a(n+1), n >= 0.
a(n+3) = 2*a(n+2) + a(n+1) + 2*Sum_{k=0..n} a(k), n >= 0.
G.f.: (1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3).
a(n) = Sum_{k=0..n} binomial(n+k+1,3*k+1)*2^k + 2*Sum_{j=0..n-1} binomial(n+j-1,3*j+1)*2^j. - Emanuele Munarini, Dec 03 2012