cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001329 Number of nonisomorphic groupoids with n elements.

Original entry on oeis.org

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, 50976900301814584087291487087214170039, 155682086691137947272042502251643461917498835481022016
Offset: 0

Views

Author

Keywords

Comments

The number of isomorphism classes of closed binary operations on a set of order n.
The term "magma" is also used as an alternative for "groupoid" since the latter has a different meaning in e.g. category theory. - Joel Brennan, Jan 20 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j>=1} ( (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)). - Christian G. Bower, May 08 1998, Dec 03 2003
a(n) is asymptotic to n^(n^2)/n! = A002489(n)/A000142(n) ~ (e*n^(n-1))^n / sqrt(2*Pi*n). - Christian G. Bower, Dec 03 2003
a(n) = A079173(n) + A027851(n) = A079177(n) + A079180(n).
a(n) = A079183(n) + A001425(n) = A079187(n) + A079190(n).
a(n) = A079193(n) + A079196(n) + A079199(n) + A001426(n).

Extensions

More terms from Christian G. Bower, May 08 1998

A030254 Number of nonisomorphic groupoids with 1 idempotent and a nontrivial symmetry.

Original entry on oeis.org

0, 0, 54, 12664
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=1 of A038020.

Formula

a(n) = A030253(n) - A030271(n).

Extensions

a(3) corrected by Andrew Howroyd, Feb 02 2023

A038019 Triangle: T(n,k), k<=n: groupoids with no symmetry with n elements and k idempotents.

Original entry on oeis.org

1, 0, 1, 1, 4, 1, 969, 1431, 729, 108, 56615456, 75491208, 37741600, 8386560, 697501
Offset: 0

Views

Author

Christian G. Bower, May 15 1998

Keywords

Crossrefs

A038020 Triangle: T(n,k), k<=n: groupoids with a nontrivial symmetry with n elements and k idempotents.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 9, 54, 0, 30, 15376, 12664, 14304, 4096, 3187
Offset: 0

Views

Author

Christian G. Bower, May 15 1998

Keywords

Examples

			Triangle begins:
    0;
    0,     0;
    2,     0,     2;
    9,    54,     0,   30;
15376, 12664, 14304, 4096, 3187;
  ...
		

Crossrefs

Row sums are A030246.
Main diagonal is A030249.
Columns k=0..1 are A030252, A030254.

Formula

Difference of A038018 and A038019.

A118542 Number of nonisomorphic groupoids with <= n elements.

Original entry on oeis.org

1, 2, 12, 3342, 178985294, 2483527716080119, 14325590005802419238355799, 50976900301828909677297289506452525838, 155682086691137998248942804080553139214788341933547854
Offset: 0

Views

Author

Jonathan Vos Post, May 06 2006

Keywords

Comments

The number of isomorphism classes of closed binary operations on sets of order <= n. See formulas by Christian G. Bower in A001329 Number of nonisomorphic groupoids with n elements.

Examples

			a(5) = 1 + 1 + 10 + 3330 + 178981952 + 2483527537094825 = 2483527716080119 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A001329(i). a(n) = SUM[i=0..n] (A079173(i)+A027851(i)). a(n) = SUM[i=0..n] (A079177(i)+A079180(i)). a(n) = SUM[i=0..n] (A079183(i)+A001425(i)). a(n) = SUM[i=0..n] (A079187(i)+A079190(i)). a(n) = SUM[i=0..n] (A079193(i)+A079196(i)+A079199(i)+A001426(i)).
Showing 1-5 of 5 results.