A030272 Number of partitions of n^3 into distinct cubes.
1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 6, 6, 7, 6, 20, 18, 21, 42, 55, 52, 80, 126, 140, 201, 323, 361, 600, 626, 938, 1387, 1648, 2310, 3620, 4575, 5495, 9278, 11239, 14229, 23406, 28780, 38218, 53987, 73114, 87568, 134007, 181986, 233004, 348230, 432184
Offset: 0
Keywords
Examples
a(6) = 2: [27,64,125], [216]. a(9) = 3: [1,27,64,125,512], [1,216,512], [729].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..180
Programs
-
Mathematica
nmax = 50; poly = ConstantArray[0, nmax^3 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^3 + 1]], {j, nmax^3, k^3, -1}];, {k, 2, nmax}]; Table[poly[[1 + n^3]], {n, 0, nmax}] (* Vaclav Kotesovec, Sep 19 2020 *)
-
PARI
apply( A030272(n)=A279329(n^3), [0..30]) \\ M. F. Hasler, Jan 05 2020
Formula
a(n) = [x^(n^3)] Product_{k>=1} (1 + x^(k^3)). - Ilya Gutkovskiy, Apr 13 2017
a(n) = A279329(n^3). - Vaclav Kotesovec, May 06 2019
a(n) ~ exp(2^(7/4) * 3^(-3/2) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(3/4)) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/8) / (2^(17/8) * 3^(1/4) * sqrt(Pi) * n^(21/8)). - Vaclav Kotesovec, May 06 2019
Extensions
a(0)=1 prepended by Ilya Gutkovskiy, Apr 13 2017