cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030272 Number of partitions of n^3 into distinct cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 6, 6, 7, 6, 20, 18, 21, 42, 55, 52, 80, 126, 140, 201, 323, 361, 600, 626, 938, 1387, 1648, 2310, 3620, 4575, 5495, 9278, 11239, 14229, 23406, 28780, 38218, 53987, 73114, 87568, 134007, 181986, 233004, 348230, 432184
Offset: 0

Views

Author

Keywords

Examples

			a(6) = 2: [27,64,125], [216].
a(9) = 3: [1,27,64,125,512], [1,216,512], [729].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; poly = ConstantArray[0, nmax^3 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^3 + 1]], {j, nmax^3, k^3, -1}];, {k, 2, nmax}]; Table[poly[[1 + n^3]], {n, 0, nmax}] (* Vaclav Kotesovec, Sep 19 2020 *)
  • PARI
    apply( A030272(n)=A279329(n^3), [0..30]) \\ M. F. Hasler, Jan 05 2020

Formula

a(n) = [x^(n^3)] Product_{k>=1} (1 + x^(k^3)). - Ilya Gutkovskiy, Apr 13 2017
a(n) = A279329(n^3). - Vaclav Kotesovec, May 06 2019
a(n) ~ exp(2^(7/4) * 3^(-3/2) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(3/4)) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/8) / (2^(17/8) * 3^(1/4) * sqrt(Pi) * n^(21/8)). - Vaclav Kotesovec, May 06 2019

Extensions

a(0)=1 prepended by Ilya Gutkovskiy, Apr 13 2017