A030290 a(n) is the smallest k > a(n-1) such that k^3 has no digit in common with a(n-1)^3.
0, 1, 2, 3, 4, 5, 7, 8, 16, 18, 40, 45, 67, 98, 150, 204, 237, 44216, 46443, 78742, 79930, 130714, 173000, 185604, 1000000, 1304963, 10000000, 13049563, 100000000, 130495593, 1000000000, 1304955895, 10000000000, 13049558812, 100000000000, 130495588186, 1000000000000, 1304955880707
Offset: 0
Examples
a(5) = 5 and 5^3 = 125 has no digit in common with the cube of a(4) = 4, 4^3 = 64. But a(6) cannot be equal to 6, because 6^3 = 216 has digits '1' and '2' in common with 5^3 = 125.
Links
- David W. Wilson, Table of n, a(n) for n = 0..90
Crossrefs
Cf. A030289.
Programs
-
PARI
next_A030290(n, S=Set(digits(n^3)))={if(n>18e4,S[1]&&return(10^logint(n<<3,10));n\=sqrtn(.45,3));for(k=n+1,oo, #setintersect(Set(digits(k^3)), S)||return(k))} \\ M. F. Hasler, Nov 12 2017 print1(a=0); for(i=1, 99, print1(", "a=next_A030290(a))) \\ M. F. Hasler, Nov 08 2017
Formula
a(n) = A030289(n)^(1/3). - David W. Wilson, Nov 08 2017
For k >= 12, a(2k) = 10^(k-6), and a(2k+1) > c*a(2k) with approximate equality, where c = (20/9)^(1/3) = 1.30495588... - M. F. Hasler, Nov 12 2017
Comments