cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A030289 a(n+1) is the next larger cube with no digits in common with a(n), a(0) = 0.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 343, 512, 4096, 5832, 64000, 91125, 300763, 941192, 3375000, 8489664, 13312053, 86444696669696, 100175333300307, 488224224494488, 510657175657000, 2233398984434344, 5177717000000000, 6393843393228864
Offset: 0

Views

Author

Keywords

Comments

From a(24) on, even-indexed terms are powers of 1000, odd-indexed terms are the next larger cube to a(n-1)*20/9 with no digit 0 or 1, cf. A030290. - M. F. Hasler, Nov 12 2017

Crossrefs

Squares whose digits do not appear in previous term: A030288.
Primes whose digits do not appear in previous term: A030284.
Cf. A030290: cube roots of the terms.

Programs

  • Mathematica
    bb={0}; idi1=IntegerDigits[0]; Do[idi=IntegerDigits[r=i^3]; If[Intersection[idi, idi1]=={}, bb={bb, r}; idi1=idi], {i, 1, 100000}]; fla=Flatten[bb] (* Zak Seidov, Feb 17 2005 *)
    Nest[Append[#, Block[{k = Last@ # + 1, m = IntegerDigits[Last[#]^3]}, While[IntersectingQ[IntegerDigits[k^3], m], k++]; k]] &, {0}, 23]^3 (* Michael De Vlieger, Nov 13 2017 *)
  • PARI
    next_A030289(n,D(n)=Set(digits(n)),S=D(n))={if(n>6e15,S[1]&&return(1000^(logint(n,1000)+1));n=n*20\9); for(k=sqrtnint(n,3)+1,oo,#setintersect(D(k^3),S)||return(k^3))} \\ M. F. Hasler, Nov 12 2017

Formula

a(n) = A030290(n)^3. - David W. Wilson, Nov 08 2017

A100373 Lexicographically earliest increasing sequence of composite numbers such that the digits of a(n) do not appear in a(n-1).

Original entry on oeis.org

4, 6, 8, 9, 10, 22, 30, 42, 50, 62, 70, 81, 90, 111, 200, 314, 500, 611, 700, 812, 900, 1111, 2000, 3111, 4000, 5111, 6000, 7111, 8000, 9111, 20000, 31111, 40000, 51111, 60000, 71111, 80000, 91111, 200000, 311113, 400000, 511112, 600000, 711111
Offset: 1

Views

Author

Labos Elemer, Dec 01 2004

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x) local L,S,carry,m,nL,b,d0,Lz,z,i,d;
      L:= convert(x,base,10);
      nL:= nops(L);
      S:= sort(convert({$0..9} minus convert(L,set),list));
      b:= nops(S);
      d0:= min(select(`>`,S,L[-1]));
      if d0 = infinity then
        if S[1] = 0 then Lz:= Vector([0$nL, S[2]])
        else Lz:= Vector([S[1]$(nL+1)])
        fi
      else
        Lz:= Vector([S[1]$(nL-1),d0])
      fi;
      d:= LinearAlgebra:-Dimension(Lz);
      do
        z:= add(Lz[i]*10^(i-1),i=1..d);
        if not isprime(z) then return z fi;
        carry:= true;
        for i from 1 to d while carry do
          if Lz[i] = S[-1] then Lz[i]:= S[1]
          else
            carry:= false; if member(Lz[i],S,'m') then Lz[i]:= S[m+1] fi
          fi
        od;
        if carry then d:= d+1; if S[1] = 0 then Lz(d):= S[2] else Lz(d) := S[1] fi fi
      od;
    end proc:
    R:= 4: r:= 4:
    for i from 2 to 100 do
      r:= f(r);
      R:= R,r
    od:
    R; # Robert Israel, Feb 27 2025
  • Mathematica
    ta={1};Do[s1=IntegerDigits[Part[ta, Length[ta]]]; s2=IntegerDigits[n];If[Equal[Intersection[s1, s2], {}] &&!PrimeQ[n], Print[{Last[ta], n}];ta=Append[ta, n]], {n, 1, 1000000}];ta=Delete[ta, 1]

A294662 Least k > a(n-1) such that k^3 has no digit in common with a(n-1) and a(n+1), a(0)=0.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 29, 55, 88, 90, 111, 200, 211, 400, 518, 654, 888, 889, 1111, 2825, 3131, 4244, 11111, 28222, 31535, 42449, 53355, 90000, 111181, 590000, 618181, 900000, 1111115, 9000000, 11111115, 60660090, 114144155
Offset: 0

Views

Author

M. F. Hasler, Nov 09 2017

Keywords

Comments

This is the sequence which corresponds to the original definition of A030290, before it was corrected to reproduce the data (and the intended meaning).

Examples

			a(3) cannot be 3 because 3^3 = 27 would have the digit '2' in common with a(2) = 2, therefore a(3) = 4, which does not violate this condition.
After a(9) = 10, none of the numbers { 11, ..., 19 } can follow, because they have the digit '1' in common with a(9)^3 = 1000. Numbers { 20, ..., 28 } are excluded because their cube would have a digit '0' or '1' in common with a(9). Therefore, a(10) = 29 which hasn't a digit in common with a(9)^3, nor has 29^3 = 24389 a digit in common with a(9).
a(38) = 11111115 with 11111115^3 = 1371743552812575445875 using all digits except for 0, 6 and 9. So a(39) = 60660090 is possible, with a(39)^3 = 223207688999086038729000 having all digits except for 1, 4 and 5.
		

Crossrefs

Programs

  • PARI
    nxt(a,L=oo,D(a)=Set(digits(a)),S=D(a),T=D(a^3))={for(k=a+1,L, #setintersect(D(k),T)||#setintersect(D(k^3),S)||return(k))}
    A294662=List(); a=0; until(!a=nxt(a,1e7),write("/tmp/A294662.txt",#A294662," ",a);listput(A294662,a))
Showing 1-3 of 3 results.