A030386 Triangle T(n,k): write n in base 4, reverse order of digits.
0, 1, 2, 3, 0, 1, 1, 1, 2, 1, 3, 1, 0, 2, 1, 2, 2, 2, 3, 2, 0, 3, 1, 3, 2, 3, 3, 3, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 0, 1, 2
Offset: 0
Examples
Triangle begins: 0 1 2 3 0, 1 1, 1 2, 1 3, 1 0, 2 1, 2 2, 2 3, 2 0, 3 1, 3 2, 3 3, 3 0, 0, 1 1, 0, 1 ... - _Philippe Deléham_, Oct 20 2011
Links
- Reinhard Zumkeller, Rows n = 0..1000 of triangle, flattened
Crossrefs
Programs
-
Haskell
a030386 n k = a030386_tabf !! n !! k a030386_row n = a030386_tabf !! n a030386_tabf = iterate succ [0] where succ [] = [1] succ (3:ts) = 0 : succ ts succ (t:ts) = (t + 1) : ts -- Reinhard Zumkeller, Sep 18 2015
-
Maple
A030386_row := n -> op(convert(n, base, 4)): seq(A030386_row(n), n=0..36); # Peter Luschny, Nov 28 2017
-
Mathematica
Flatten[Table[Reverse[IntegerDigits[n,4]],{n,0,50}]] (* Harvey P. Dale, Oct 13 2012 *)
-
PARI
A030386(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\4^k%4 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... \\ M. F. Hasler, Jul 21 2013
Extensions
Initial 0 and better name by Philippe Deléham, Oct 20 2011