cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030440 Values of Newton-Gregory forward interpolating polynomial (1/3)*(n-1)*(2*n+3)*(2*n-1).

Original entry on oeis.org

1, 0, 7, 30, 77, 156, 275, 442, 665, 952, 1311, 1750, 2277, 2900, 3627, 4466, 5425, 6512, 7735, 9102, 10621, 12300, 14147, 16170, 18377, 20776, 23375, 26182, 29205, 32452, 35931, 39650, 43617, 47840, 52327, 57086, 62125, 67452, 73075, 79002, 85241, 91800, 98687, 105910
Offset: 0

Views

Author

Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas)

Keywords

Comments

Starting at a(2)=7, partial sums of A073577. - J. M. Bergot, Apr 20 2016

References

  • S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234; http://www.scirp.org/journal/am; http://dx.doi.org/10.4236/am.2014.515216

Crossrefs

Cf. A073577, A000384 (trinomial k=2 column), A106734, A127672, A027907.

Programs

  • Magma
    [(1/3)*(n-1)*(2*n-1)*(2*n+3):n in [0..50]]; // Vincenzo Librandi, Apr 20 2018
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 0, 7, 30}, 40] (* Vincenzo Librandi, Apr 20 2018 *)
  • PARI
    a(n) = (n-1)*(2*n-1)*(2*n+3)/3; \\ Altug Alkan, Apr 19 2018
    

Formula

G.f.: (1+13*x^2-2*x^3-4*x)/(1-x)^4. - R. J. Mathar, May 18 2014
a(n) = (1/6) * (A106734(2n) - 1), n > 0. - Mathew Englander, Jun 06 2014
E.g.f.: (3 - 3*x + 12*x^2 + 4*x^3)*exp(x)/3. - Ilya Gutkovskiy, Apr 20 2016
a(n+1) = trinomial(2*n+1, 3) = binomial(2*n+1, 3) + (2*n+1)*(2*n) = n*(2*n+1)*(2*n+5)/3, for n >= 0, with the trinomial irregular triangle A027907. a(n+1) = trinomial(2*n+1, 4*n-1), for n >= 1 (symmetry). a(n+1) = Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(4*(n-1), x)/Pi with the R polynomial coefficients given in A127672. [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 3, rewritten with x = 2*cos(phi)]. The g.f. of {a(n+1)}{n>= 0} is x*(7 + 2*x - x^2)/(1 - x)^4. - _Wolfdieter Lang, Apr 19 2018