cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030443 Nonzero coefficients in theta series of {E_7}* lattice.

Original entry on oeis.org

1, 56, 126, 576, 756, 1512, 2072, 4032, 4158, 5544, 7560, 12096, 11592, 13664, 16704, 24192, 24948, 27216, 31878, 44352, 39816, 41832, 55944, 72576, 66584, 67536, 76104, 100800, 99792, 101304, 116928, 145728, 133182, 126504, 160272, 205632, 177660, 176456, 205128, 249984, 249480, 234360
Offset: 0

Views

Author

Keywords

Comments

In the Eichler and Zagier reference this is e_4(A014601(n)), n >= 0, (p. 141), where e_4 is obtained from e_{4,1}(n,r), eq. (7), p. 22, depending only on 4*n-r^2 >= 0 (for integers n and r), i.e. on A014601(n), n >= 0 (with a new notation for n). - Wolfdieter Lang, Jan 08 2016

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125.
  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhäuser, 1985, p. 141.

Crossrefs

Cf. A003781.

Programs

  • PARI
    f(n) = local(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A^3 * (A^4 + 7 * subst(A, x, -x)^4) / 8, n)); \\ A003781
    lista(nn) = select(x->(x>0), vector(nn, k, f(k-1))); \\ Michel Marcus, Nov 11 2023

Extensions

More terms from Michel Marcus, Nov 11 2023