A030518 Number of walks of length n between two vertices on an icosahedron at distance 2.
0, 2, 8, 52, 248, 1302, 6448, 32552, 162448, 813802, 4067448, 20345052, 101717448, 508626302, 2543092448, 12715657552, 63578092448, 317891438802, 1589456217448, 7947285970052, 39736424967448, 198682149251302, 993410721842448, 4967053731282552
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,10,-20,-25).
Crossrefs
Cf. A030517.
Programs
-
PARI
concat(0, Vec(2*x^2/((1+x)*(1-5*x)*(1-5*x^2)) + O(x^30))) \\ Colin Barker, Oct 17 2016
Formula
a(n) = 2*A030517(n-1) + 2*a(n-1) + 5*a(n-2).
From Emeric Deutsch, Apr 03 2004: (Start)
a(n) = 5^n/12 - (-1)^n/12 - (sqrt(5))^(n+1)/20 - (-sqrt(5))^(n+1)/20.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4). (End)
From Colin Barker, Oct 17 2016: (Start)
G.f.: 2*x^2 / ((1 + x)*(1 - 5*x)*(1 - 5*x^2)).
a(n) = (5^n - 1)/12 for n even.
a(n) = (-6*5^((n-1)/2) + 5^n + 1)/12 for n odd. (End)