cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030518 Number of walks of length n between two vertices on an icosahedron at distance 2.

Original entry on oeis.org

0, 2, 8, 52, 248, 1302, 6448, 32552, 162448, 813802, 4067448, 20345052, 101717448, 508626302, 2543092448, 12715657552, 63578092448, 317891438802, 1589456217448, 7947285970052, 39736424967448, 198682149251302, 993410721842448, 4967053731282552
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A030517.

Programs

  • PARI
    concat(0, Vec(2*x^2/((1+x)*(1-5*x)*(1-5*x^2)) + O(x^30))) \\ Colin Barker, Oct 17 2016

Formula

a(n) = 2*A030517(n-1) + 2*a(n-1) + 5*a(n-2).
A030517(n) = 2*A030517(n-1) + 2*a(n-1) + 5*A030517(n-2).
From Emeric Deutsch, Apr 03 2004: (Start)
a(n) = 5^n/12 - (-1)^n/12 - (sqrt(5))^(n+1)/20 - (-sqrt(5))^(n+1)/20.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4). (End)
From Colin Barker, Oct 17 2016: (Start)
G.f.: 2*x^2 / ((1 + x)*(1 - 5*x)*(1 - 5*x^2)).
a(n) = (5^n - 1)/12 for n even.
a(n) = (-6*5^((n-1)/2) + 5^n + 1)/12 for n odd. (End)