cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054884 Number of closed walks of length n along the edges of an icosahedron based at a vertex.

Original entry on oeis.org

1, 0, 5, 10, 65, 260, 1365, 6510, 32865, 162760, 815365, 4069010, 20352865, 101725260, 508665365, 2543131510, 12715852865, 63578287760, 317892415365, 1589457194010, 7947290852865, 39736429850260
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Crossrefs

Programs

  • Magma
    [Floor((5^n+(-1)^n*5+3*(1+(-1)^n)*Sqrt(5)^n)/12): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
    
  • Mathematica
    LinearRecurrence[{4,10,-20,-25},{1,0,5,10},30] (* Harvey P. Dale, May 02 2022 *)
  • PARI
    a(n) = if(n%2, 5^n-5, 5^n+5+6*5^(n/2))/12; \\ François Marques, Jul 11 2021
    
  • SageMath
    def A054884(n): return (5^n + 5*(-1)^n + 3*(1 + (-1)^n)*5^(n/2))/12
    [A054884(n) for n in range(41)] # G. C. Greubel, Feb 07 2023

Formula

G.f.: (1/12)*(1/(1-5*t) + 5/(1+t) + 6/(1-5*t^2)).
a(n) = (5^n + (-1)^n*5 + 3*(1 + (-1)^n)*sqrt(5)^n)/12.
a(n+1) = 5 * A030517(n) for n > 0.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4). - François Marques, Jul 10 2021
E.g.f.: (1/12)*(5*exp(-x) + exp(5*x) + 6*cosh(sqrt(5)*x)). - G. C. Greubel, Feb 07 2023

A054885 Number of walks of length n along the edges of an icosahedron between two opposite vertices.

Original entry on oeis.org

0, 0, 0, 10, 40, 260, 1240, 6510, 32240, 162760, 812240, 4069010, 20337240, 101725260, 508587240, 2543131510, 12715462240, 63578287760, 317890462240, 1589457194010, 7947281087240, 39736429850260
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Crossrefs

Programs

  • Magma
    [Floor((5^n+(-1)^n*5-3*(1+(-1)^n)*Sqrt(5)^n)/12): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
    
  • Mathematica
    LinearRecurrence[{4,10,-20,-25}, {0,0,0,10}, 41] (* G. C. Greubel, Feb 07 2023 *)
  • PARI
    a(n) = if(n%2, 5^n-5, 5^n+5-6*5^(n/2))/12; \\ François Marques, Jul 11 2021
    
  • SageMath
    def A054885(n): return (5^n +5*(-1)^n -3*(1+(-1)^n)*5^(n/2))/12
    [A054885(n) for n in range(41)] # G. C. Greubel, Feb 07 2023

Formula

G.f.: (1/12)*(1/(1-5*t) + 5/(1+t) - 6/(1-5*t^2)).
a(n) = (5^n + 5*(-1)^n - 3*(1 + (-1)^n)*sqrt(5)^n)/12.
a(n+1) = 5 * A030518(n) for n > 0.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4). - François Marques, Jul 10 2021
E.g.f.: (1/12)*(5*exp(-x) + exp(5*x) - 6*cosh(sqrt(5)*x)). - G. C. Greubel, Feb 07 2023

A030517 Number of walks of length n between two vertices on an icosahedron at distance 1.

Original entry on oeis.org

1, 2, 13, 52, 273, 1302, 6573, 32552, 163073, 813802, 4070573, 20345052, 101733073, 508626302, 2543170573, 12715657552, 63578483073, 317891438802, 1589458170573, 7947285970052, 39736434733073, 198682149251302, 993410770670573, 4967053731282552
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A030518.

Programs

  • Mathematica
    LinearRecurrence[{4, 10, -20, -25}, {1, 2, 13, 52}, 24] (* Jean-François Alcover, Jul 12 2021 *)
  • PARI
    Vec(x*(1-2*x-5*x^2)/((1+x)*(1-5*x)*(1-5*x^2)) + O(x^30)) \\ Colin Barker, Oct 17 2016

Formula

a(n) = 2*a(n-1) + 2*A030518(n-1) + 5*a(n-2).
A030518(n) = 2*a(n-1) + 2*A030518(n-1) + 5*A030518(n-2).
From Emeric Deutsch, Apr 03 2004: (Start)
a(n) = 5^n/12 - (-1)^n/12 + (sqrt(5))^(n+1)/20 + (-sqrt(5))^(n+1)/20.
a(n) = 4*a(n-1) + 10*a(n-2) - 20*a(n-3) - 25*a(n-4) for n>=5. (End)
From Colin Barker, Oct 17 2016: (Start)
G.f.: x*(1 - 2*x - 5*x^2)/((1 + x)*(1 - 5*x)*(1 - 5*x^2)).
a(n) = (5^n - 1)/12 for n even.
a(n) = (6*5^((n-1)/2) + 5^n + 1)/12 for n odd. (End)
Showing 1-3 of 3 results.