A030519 Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.
2, 13, 101, 619, 3641, 20028, 106812, 554352, 2828660, 14244878, 71077246, 352184306, 1736118578, 8525182798, 41741378126, 203929434766, 994680883360, 4845761306611, 23586192274443, 114731539477465, 557859497501007, 2711772157178038, 13180227306740726
Offset: 8
Keywords
Links
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- Sean A. Irvine, Java program (github)
Programs
-
PARI
Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660 M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879 N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212 b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2; a(n) = b(n-4); \\ Michel Marcus, Apr 03 2020
Formula
a(n+4) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), and L'(n)=A039660(n) for n >= 4. - Sean A. Irvine, Apr 02 2020
Extensions
More terms and title improved by Sean A. Irvine, Apr 02 2020
Comments