A030628 1 together with numbers of the form p*q^4 and p^9, where p and q are distinct primes.
1, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 512, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384
Offset: 1
References
- D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976. p. 119.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry for 48, page 106, 1997.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Divisor Product
- Index to sequences related to prime signature
Programs
-
Maple
with(numtheory): k:=5: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # Walter Kehowski, Sep 13 2005
-
Mathematica
Join[{1},Select[Range[6000],DivisorSigma[0,#]==10&]] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *) Select[Range[2500],Times@@Most[Divisors[#]]==#^4&] (* Harvey P. Dale, Nov 04 2024 *)
-
PARI
{v=[]; for(n=1,500,v=concat(v, if(numdiv(n)==10,n,",")); ); v} \\ Jason Earls, Jun 18 2001
-
PARI
list(lim)=my(v=List([1]), t); forprime(p=2, (lim\2+.5)^(1/4), t=p^4; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); forprime(p=2,(lim+.5)^(1/9),listput(v,p^9)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 26 2012
-
Python
from sympy import primepi, primerange, integer_nthroot def A030628(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n-1+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0])-primepi(integer_nthroot(x,9)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
Extensions
Better description from Sharon Sela (sharonsela(AT)hotmail.com), Dec 23 2001
More terms from Walter Kehowski, Sep 13 2005
Comments