cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030628 1 together with numbers of the form p*q^4 and p^9, where p and q are distinct primes.

Original entry on oeis.org

1, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 512, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384
Offset: 1

Views

Author

Keywords

Comments

Also 1 together with numbers with 10 divisors. Also numbers n such that product of all proper divisors of n equals n^4.
If M(n) denotes the product of all divisors of n, then n is said to be k-multiplicatively perfect if M(n)=n^k. All such numbers are of the form p*q^(k-1) or p^(2k-1). The sequence A030628 is therefore 5-multiplicatively perfect. See the Links for A007422. - Walter Kehowski, Sep 13 2005

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976. p. 119.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry for 48, page 106, 1997.

Crossrefs

Programs

  • Maple
    with(numtheory): k:=5: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # Walter Kehowski, Sep 13 2005
  • Mathematica
    Join[{1},Select[Range[6000],DivisorSigma[0,#]==10&]] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
    Select[Range[2500],Times@@Most[Divisors[#]]==#^4&] (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    {v=[]; for(n=1,500,v=concat(v, if(numdiv(n)==10,n,",")); ); v} \\ Jason Earls, Jun 18 2001
    
  • PARI
    list(lim)=my(v=List([1]), t); forprime(p=2, (lim\2+.5)^(1/4), t=p^4; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); forprime(p=2,(lim+.5)^(1/9),listput(v,p^9)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 26 2012
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A030628(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0])-primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Union A178739 U A179665 {1}. - R. J. Mathar, Apr 03 2011

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Dec 23 2001
More terms from Walter Kehowski, Sep 13 2005