A030633 Numbers with 15 divisors.
144, 324, 400, 784, 1936, 2025, 2500, 2704, 3969, 4624, 5625, 5776, 8464, 9604, 9801, 13456, 13689, 15376, 16384, 21609, 21904, 23409, 26896, 29241, 29584, 30625, 35344, 42849, 44944, 55696, 58564, 59536, 60025, 68121, 71824, 75625
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[300000],DivisorSigma[0,#]==15&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
-
PARI
is(n)=numdiv(n)==15 \\ Charles R Greathouse IV, Jun 19 2016
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A030633(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0])-primepi(integer_nthroot(x,14)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025
Formula
From Amiram Eldar, Jul 03 2022: (Start)
A000005(a(n)) = 15.
Sum_{n>=1} 1/a(n) = P(2)*P(4) - P(6) + P(14) = 0.0178111..., where P is the prime zeta function. (End)
Comments