cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030633 Numbers with 15 divisors.

Original entry on oeis.org

144, 324, 400, 784, 1936, 2025, 2500, 2704, 3969, 4624, 5625, 5776, 8464, 9604, 9801, 13456, 13689, 15376, 16384, 21609, 21904, 23409, 26896, 29241, 29584, 30625, 35344, 42849, 44944, 55696, 58564, 59536, 60025, 68121, 71824, 75625
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^14 (subset of A010802) or p^2*q^4 (A189988) where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Mathematica
    Select[Range[300000],DivisorSigma[0,#]==15&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==15 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A030633(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0])-primepi(integer_nthroot(x,14)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

From Amiram Eldar, Jul 03 2022: (Start)
A000005(a(n)) = 15.
Sum_{n>=1} 1/a(n) = P(2)*P(4) - P(6) + P(14) = 0.0178111..., where P is the prime zeta function. (End)