cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030669 Cube root of A030668.

Original entry on oeis.org

5, 3, 7, 16, 8, 4, 9, 20, 21, 10, 48, 5, 11, 52, 25, 55, 12, 57, 27, 59, 6, 61, 62, 29, 63, 64, 14, 66, 31, 67, 68, 32, 15, 7, 33, 154, 72, 73, 34, 16, 161, 35, 76, 164, 77, 36, 78, 169, 17, 37, 8, 174, 81, 38, 82, 178, 83, 18, 39, 182, 85, 184, 86, 40, 87, 188
Offset: 1

Views

Author

Keywords

Comments

a(n) = A018852(n) if n is not a cube. - Robert Israel, Dec 25 2018

Crossrefs

Programs

  • Maple
    f:= proc(n) local d,x;
      for d from 1 do
        x:= ceil((n*10^d)^(1/3));
        if x^3 < (n+1)*10^d then return x fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 25 2018

A030678 Smallest nontrivial extension of n-th palindrome which is a cube.

Original entry on oeis.org

125, 27, 343, 4096, 512, 64, 729, 8000, 9261, 110592, 226981, 3375, 4410944, 551368, 6644672, 778688, 884736, 9938375, 101194696, 111284641, 12167, 13144256, 14172488, 151419437, 16194277, 17173512, 1815848, 191102976
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 3: # to get extensions of all palindromes of <= N digits
    f:= proc(n) local d,x;
      for d from 1 do
        x:= ceil((n*10^d)^(1/3));
        if x^3 < (n+1)*10^d then return x^3 fi
      od
    end proc:
    digrev:= proc(n) local i,L;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    Res:= seq(f(i),i=1..9):
    for d from 2 to N do
    if d::even then
        m:= d/2;
        Res:= Res, seq(f(n*10^m + digrev(n)), n=10^(m-1)..10^m-1);
    else
        m:= (d-1)/2;
        Res:= Res, seq(seq(f(n*10^(m+1)+y*10^m+digrev(n)), y=0..9), n=10^(m-1)..10^m-1)
    fi
    od:
    Res; # Robert Israel, Dec 25 2018

Formula

a(n) = A030668(A002113(n+1)) = A030679(n)^3. - Robert Israel, Dec 25 2018
Showing 1-2 of 2 results.