A030675 Smallest nontrivial extension of n-th palindrome which is a prime.
11, 23, 31, 41, 53, 61, 71, 83, 97, 113, 223, 331, 443, 557, 661, 773, 881, 991, 1013, 1117, 1213, 1319, 14107, 1511, 1613, 17107, 1811, 1913, 2027, 2129, 2221, 23201, 2423, 2521, 2621, 2729, 28201, 2927, 3037, 3137, 32303, 3331, 3433
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
lpe:= proc(n) local b,d,x; for d from 1 do b:= 10^d*n; for x from b+1 to b+10^d-1 by 2 do if isprime(x) then return x fi od od end proc: digrev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: N:= 4: # to use all palindromes of up to N digits Res:= seq(lpe(n),n=1..9): for d from 2 to N do if d::even then m:= d/2; Res:= Res, seq(lpe(n*10^m + digrev(n)), n=10^(m-1)..10^m-1); else m:= (d-1)/2; Res:= Res, seq(seq(lpe(n*10^(m+1)+y*10^m+digrev(n)), y=0..9), n=10^(m-1)..10^m-1); fi od: Res; # Robert Israel, Sep 18 2018
-
Mathematica
d[n_]:=IntegerDigits[n]; Table[i=1; While[!PrimeQ[x=FromDigits[Flatten[{d[n],d[i]}]]],i=i+2]; x, {n,Select[Range[350],Reverse[x=d[#]]==x &]}] (* Jayanta Basu, May 24 2013 *)
Formula
Extensions
Corrected by Robert Israel, Sep 18 2018