cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031121 Integer ratios of Fibonacci numbers F(m)/F(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 18, 21, 29, 34, 47, 48, 55, 72, 76, 89, 122, 123, 144, 199, 233, 305, 322, 323, 329, 377, 521, 610, 842, 843, 987, 1292, 1353, 1364, 1597, 2207, 2208, 2255, 2584, 3571, 4181, 5473, 5777, 5778, 5796, 6765, 9349
Offset: 1

Views

Author

Keywords

Comments

Phong shows that no member of this sequence is perfect. - Charles R Greathouse IV, Jul 26 2011
Every number in the sequence except 1 can be written uniquely as the quotient of two Fibonacci numbers. - M. Farrokhi D. G., Jul 24 2020
From the Binet's formula for the n-th Fibonacci number, F(n), it can be demonstrated that F(n) / F(d) can be an integer only if d is a divisor of n. See also the M. Farrokhi D. G. link. - Robert G. Wilson v, Sep 22 2021

Crossrefs

Programs

  • GAP
    Filtered(Set(List(Cartesian([1..21], [1..21]), x -> Fibonacci(x[1] * x[2])/Fibonacci(x[1]))), x -> x < 10000); # M. Farrokhi D. G., Jul 24 2020
  • Mathematica
    Union[Select[First[#]/Last[#]&/@Tuples[Fibonacci[Range[50]],2],IntegerQ]] (* Harvey P. Dale, Feb 25 2012 *)
    mx = 20000; lmt = 40; lst = {}; f[n_] := AppendTo[lst, Select[ Fibonacci@ n/Fibonacci@# & /@ Most@ Divisors@ n, # < mx &]]; Union@ Flatten@ Array[f, lmt] (* Robert G. Wilson v, Sep 22 2021 *)
  • PARI
    v=List();for(m=1,100,fordiv(m,d,listput(v,fibonacci(m)/fibonacci(d))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jul 26 2011
    

Extensions

More terms from John W. Layman, May 22 1999