A031218 Largest prime power <= n.
1, 2, 3, 4, 5, 5, 7, 8, 9, 9, 11, 11, 13, 13, 13, 16, 17, 17, 19, 19, 19, 19, 23, 23, 25, 25, 27, 27, 29, 29, 31, 32, 32, 32, 32, 32, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 49, 49, 49, 49, 53, 53, 53, 53, 53, 53, 59, 59, 61, 61, 61, 64, 64, 64, 67, 67, 67, 67, 71, 71
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Sunben Chiu, Pinghzi Yuan, and Tao Zhou, On the greatest common divisor of binomial coefficients, Bull Korean Math. Soc. 60 (2023) 863-872
- B. Dearden, J. Iiams, and J. Metzger, Rumor Arrays, Journal of Integer Sequences, 16 (2013), #13.9.3.
- Eric Weisstein's World of Mathematics, Prime Power
Programs
-
Haskell
a031218 n = last $ takeWhile (<= n) a000961_list -- Reinhard Zumkeller, Apr 25 2011
-
Maple
A031218 := proc(n) local a,pi,p,m ; a := 1 ; for pi from 1 do p := ithprime(pi) ; if p > n then return a; end if; for m from 0 do if p^m > n then break; elif p^m <= n then a := max(a,p^m) ; end if; end do: end do: a ; end proc: seq(A031218(n),n=1..40) ; # R. J. Mathar, Jul 20 2025
-
PARI
a(n)=if(n<1,0, while(matsize(factor(n))[1]>1,n--); n)
-
Python
from sympy import factorint def A031218(n): return next(filter(lambda m:len(factorint(m))<=1, range(n,0,-1))) # Chai Wah Wu, Oct 25 2024
Formula
a(n) = n - A378457(n). - R. J. Mathar, Jul 20 2025
Extensions
More terms from Erich Friedman
Comments