Original entry on oeis.org
27, 48, 69, 99, 101, 114, 125, 141, 155, 170, 183, 206, 209, 219, 223, 232, 241, 246, 261, 272, 276, 280, 283, 293, 294, 373, 376, 383, 384, 391, 394, 398, 406, 424, 432, 435, 437, 452, 466, 467, 480, 494, 507, 509, 512, 518
Offset: 1
Original entry on oeis.org
15, 28, 33, 49, 76, 79, 95, 108, 115, 130, 139, 154, 160, 166, 190, 194, 200, 218, 231, 235, 251, 263, 271, 288, 295, 296, 303, 321, 350, 356, 363, 366, 367, 389, 402, 411, 427, 438, 465, 475, 506, 513, 514, 517, 520, 523, 527
Offset: 1
A097485
Write the positive integers on labels in numerical order, forming an infinite sequence L. Consider now the succession of single digits made by juxtaposing Fibonacci numbers: 1 1 2 3 5 8 1 3 2 1 3 4 5 5 ... (A031324). This sequence gives a derangement of L that produces the same succession of digits, subject to the constraint that the smallest unused label must be used that does not lead to a contradiction.
Original entry on oeis.org
11, 23, 58, 1, 3, 2, 13, 4, 5, 589, 14, 42, 33, 37, 7, 6, 10, 9, 8, 71, 59, 72, 584, 41, 81, 67, 65, 109, 46, 17, 71, 12, 86, 57, 463, 68, 750, 25, 121, 39, 31, 96, 418, 317, 81, 151, 422, 98, 320
Offset: 1
We must begin with 1,1,2,3,... and we cannot have a(1) = 1, so the next possibility is the label "11". After "68" we must get "7,5,0,2,5,1,2,1,3,9,3,1,9,6,4,1,8..." (corresponding to Fibonacci numbers "75025,121393,196418..."); "7" is already used, and we cannot use "75" since no label begins with a 0. So the next term is "750".
Original entry on oeis.org
1, 6, 9, 16, 26, 31, 40, 42, 47, 52, 55, 56, 72, 74, 78, 82, 85, 88, 89, 91, 102, 110, 137, 147, 151, 158, 169, 175, 178, 184, 186, 191, 207, 214, 215, 221, 224, 229, 230, 237, 239, 264, 281, 282, 290, 300, 304, 305, 315, 319, 336
Offset: 1
Original entry on oeis.org
2, 8, 19, 35, 57, 70, 73, 93, 94, 98, 106, 109, 118, 126, 131, 132, 144, 145, 163, 171, 187, 193, 234, 238, 249, 260, 265, 269, 273, 275, 287, 291, 302, 310, 316, 318, 327, 331, 332, 349, 354, 358, 362, 371, 372, 374, 390, 392
Offset: 1
Original entry on oeis.org
3, 7, 10, 20, 21, 22, 64, 75, 77, 84, 97, 103, 113, 116, 140, 142, 153, 162, 172, 173, 197, 198, 203, 212, 213, 216, 220, 226, 228, 233, 243, 277, 286, 298, 299, 307, 320, 324, 338, 339, 343, 347, 397, 410, 413, 425, 444, 468, 486
Offset: 1
Original entry on oeis.org
11, 17, 18, 38, 39, 50, 62, 81, 92, 100, 104, 119, 134, 138, 146, 164, 174, 185, 192, 196, 199, 201, 202, 208, 217, 244, 259, 262, 285, 328, 329, 337, 346, 377, 381, 395, 405, 422, 429, 473, 474, 476, 492, 496, 499, 510, 515, 522
Offset: 1
Original entry on oeis.org
4, 12, 13, 32, 36, 46, 60, 68, 71, 90, 117, 120, 123, 136, 143, 148, 165, 176, 177, 180, 181, 240, 248, 266, 274, 279, 289, 297, 313, 322, 330, 333, 335, 345, 348, 355, 368, 380, 387, 388, 393, 407, 412, 419, 420, 440, 456, 458
Offset: 1
Original entry on oeis.org
25, 43, 45, 51, 59, 63, 65, 80, 105, 107, 135, 159, 161, 168, 179, 188, 195, 227, 250, 253, 268, 270, 278, 301, 309, 311, 326, 344, 351, 353, 360, 369, 375, 403, 418, 433, 448, 450, 457, 493, 504, 505, 511, 535, 559, 563, 581
Offset: 1
-
Flatten[Position[Flatten[IntegerDigits/@Fibonacci[Range[0,90]]],6]]-2 (* Harvey P. Dale, Jan 28 2015 *)
Original entry on oeis.org
23, 24, 30, 34, 44, 53, 54, 61, 67, 86, 111, 121, 124, 129, 133, 149, 152, 189, 204, 205, 211, 222, 236, 242, 247, 252, 254, 255, 256, 258, 284, 306, 312, 314, 317, 340, 342, 361, 365, 370, 386, 396, 399, 409, 414, 421, 423, 441
Offset: 1
Showing 1-10 of 12 results.
Comments