A031409 Numbers k such that the continued fraction for sqrt(k) has even period 2*m and the m-th term of the periodic part is 6.
38, 46, 54, 62, 84, 93, 111, 129, 141, 148, 164, 172, 188, 204, 212, 230, 236, 244, 245, 252, 270, 295, 305, 330, 345, 355, 395, 426, 448, 469, 474, 497, 518, 553, 570, 581, 584, 602, 609, 616, 632, 644, 648, 658, 712, 721, 738, 742, 749, 763, 765, 777, 801
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[EvenQ[len] && c[[2, len/2]] == 6, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014 *) cf6Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{1},ContinuedFraction[s][[2]]];len=Length[cf];EvenQ[len]&&cf[[len/2]]==6]; Select[Range[1000],cf6Q] (* Harvey P. Dale, Feb 04 2023 *)