cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031413 Numbers k such that the continued fraction for sqrt(k) has even period 2*m and the m-th term of the periodic part is 10.

Original entry on oeis.org

102, 114, 118, 134, 142, 228, 237, 249, 273, 309, 321, 404, 412, 428, 436, 452, 460, 476, 492, 500, 508, 524, 540, 548, 556, 572, 630, 645, 655, 670, 695, 705, 745, 755, 805, 820, 830, 895, 906, 1002, 1038, 1050, 1146, 1182, 1194, 1232, 1253, 1290, 1337
Offset: 1

Views

Author

Keywords

Comments

See comment to A031551. - Harvey P. Dale, Jul 10 2012

Crossrefs

Programs

  • Mathematica
    epQ[n_]:=Module[{p=ContinuedFraction[Sqrt[n]][[2]],len},len=Length[p];EvenQ[len]&&p[[len/2]]==10];nn=1300;With[{trms=Complement[Range[ nn],Range[ Floor[Sqrt[nn]]]^2]},Select[trms,epQ]] (* Harvey P. Dale, Jul 10 2012 *)
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[EvenQ[len] && c[[2, len/2]] == 10, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014 *)