A031413 Numbers k such that the continued fraction for sqrt(k) has even period 2*m and the m-th term of the periodic part is 10.
102, 114, 118, 134, 142, 228, 237, 249, 273, 309, 321, 404, 412, 428, 436, 452, 460, 476, 492, 500, 508, 524, 540, 548, 556, 572, 630, 645, 655, 670, 695, 705, 745, 755, 805, 820, 830, 895, 906, 1002, 1038, 1050, 1146, 1182, 1194, 1232, 1253, 1290, 1337
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
epQ[n_]:=Module[{p=ContinuedFraction[Sqrt[n]][[2]],len},len=Length[p];EvenQ[len]&&p[[len/2]]==10];nn=1300;With[{trms=Complement[Range[ nn],Range[ Floor[Sqrt[nn]]]^2]},Select[trms,epQ]] (* Harvey P. Dale, Jul 10 2012 *) n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[EvenQ[len] && c[[2, len/2]] == 10, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014 *)
Comments