A031416 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 3.
89, 149, 193, 218, 250, 277, 337, 493, 521, 569, 653, 709, 914, 1009, 1018, 1037, 1385, 1465, 1553, 1597, 1618, 1754, 1781, 1898, 1921, 1973, 1994, 2069, 2129, 2146, 2293, 2378, 2389, 2441, 2474, 2561, 2725, 2741, 2777, 2897, 2957, 2986, 3170, 3229, 3265
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
n = 1; t = {}; While[Length[t] < 60, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 3, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 03 2014 *) cfo3Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{0,0}, ContinuedFraction[ s ][[2]]];len=Length[cf];OddQ[len]&&cf[[ (len+1)/2]] == cf[[(len-1)/2]]==3]; Select[Range[3300],cfo3Q] (* Harvey P. Dale, Sep 25 2019 *)
Extensions
Initial 10 removed by T. D. Noe, Apr 03 2014