cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031417 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 4.

Original entry on oeis.org

274, 370, 481, 797, 953, 1069, 1249, 1313, 1378, 1381, 1514, 1657, 1658, 1733, 1889, 2125, 2297, 2377, 2554, 2557, 2833, 2834, 2929, 2941, 3226, 3329, 3338, 3433, 3541, 3761, 3874, 3989, 4093, 4106, 4441, 4442, 4561, 4682, 4685, 4933, 4937, 5197, 5450
Offset: 1

Views

Author

Keywords

Examples

			The simple continued fraction for sqrt(274) = [16; 1, 1, 4, 4, 1, 1, 32, ...] with odd period 7 and central term 4. Another example is sqrt(481) = [21; 1, 13, 1, 1, 1, 4, 4, 1, 1, 1, 13, 1, 42, ...] with odd period 13 and central term 4. - _Michael Somos_, Apr 03 2014
		

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 4, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 03 2014 *)
    cf4Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{1,1},ContinuedFraction[ s][[2]]];len=Length[cf];OddQ[len]&&cf[[(len+1)/2]] == cf[[(len-1)/2]]==4]; Select[Range[5500],cf4Q] (* Harvey P. Dale, Jul 28 2021 *)

Extensions

a(1) corrected by T. D. Noe, Apr 03 2014