A031435 Reversal point for powers of consecutive natural numbers.
1, 2, 4, 7, 9, 12, 15, 18, 21, 25, 28, 32, 35, 39, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 83, 87, 91, 95, 100, 104, 109, 113, 118, 122, 127, 131, 136, 141, 145, 150, 155, 159, 164, 169, 174, 179, 183, 188, 193, 198, 203, 208, 213, 218, 223, 228, 233, 238, 243, 248
Offset: 1
Keywords
Examples
a(2) = 2: 3^2 > 2^3 but 3^1 < 2^2. a(3) = 4: 4^4 > 3^5 but 4^3 < 3^4. a(4) = 7: 5^7 > 4^8 but 5^6 < 4^7. a(5) = 9: 6^9 > 5^10 but 6^8 < 5^9. a(6) = 12: 7^12 > 6^13 but 7^11 < 6^12.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A065560.
Programs
-
Mathematica
nn = 60; Table[SelectFirst[Range[5 nn], Mod[Floor[(1 + 1/n)^#], n] == 0 &], {n, nn}] (* Michael De Vlieger, Mar 30 2016, Version 10 *)
-
PARI
for(n=1,100,print1(ceil((n+1/2)*log(n)),",")) \\ Valid for 1
-
PARI
a(n) = my(k=1); while((1+1/n)^k < n, k++); k; \\ Michel Marcus, Mar 30 2019
-
Ruby
def a(n) (1..Float::INFINITY).find { |i| (i * Math.log(n, n + 1)).to_i < i - 1 } - 1 end # Peter Kagey, Mar 29 2016
Formula
If bases are N, N+1, the reversal point is floor( log(1+N)/log(1+1/N) ).
For n>1, ceiling((n+1/2)*log(n)) is an approximation to a(n) which is valid for all n <= 1000 except n=77 and n=214. - Benoit Cloitre, May 23 2002; corrected by Franklin T. Adams-Watters, Dec 16 2005
a(n) = floor(1/(1-log(n)/log(n+1))), empirical observation verified for n = 1 to 10000. - Fred Patrick Doty, Jul 13 2023
Extensions
More terms from Benoit Cloitre, May 23 2002
Comments