A137440
Triangle T(n,m) read by rows: T(m,n) = (1+n*3^m)-th prime.
Original entry on oeis.org
2, 3, 7, 5, 17, 67, 7, 29, 107, 421, 11, 41, 157, 599, 2153, 13, 53, 199, 769, 2791, 9857, 17, 67, 257, 967, 3469, 12203, 41851, 19, 79, 311, 1151, 4129, 14537, 49697, 167623, 23, 97, 367, 1327, 4817, 16871, 57571, 193957, 645581, 29, 107, 421, 1549, 5521
Offset: 1
{2},
{3, 7},
{5, 17, 67},
{7, 29, 107, 421},
{11, 41, 157, 599, 2153},
{13, 53, 199, 769, 2791, 9857},
{17, 67, 257, 967, 3469, 12203, 41851},
{19, 79, 311, 1151, 4129, 14537, 49697, 167623},
{23, 97, 367, 1327, 4817, 16871, 57571, 193957, 645581},
{29, 107, 421, 1549, 5521, 19301, 65699, 220873, 33591, 2412797},
{31, 127, 467, 1741, 6229, 21649, 73867, 247943, 822587, 2702809, 8807899}
-
T[n_, m_] := Prime[1 + n*3^m]; Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] Table[Apply[Plus, Table[T[n, m], {m, 0, n}]], {n, 0, 10}];
A358028
Primes p = prime(9*t+1) such that the 9 consecutive primes prime(9*t+1) .. prime(9*t+9) arranged in a 3 X 3 array have at least 2 equal sums along the rows, columns or main diagonals.
Original entry on oeis.org
2, 29, 67, 107, 157, 257, 311, 367, 541, 599, 709, 769, 829, 967, 1021, 1549, 1741, 1811, 1879, 1973, 2609, 2677, 3019, 3541, 3677, 4051, 4217, 4271, 4517, 4597, 4663, 4931, 5227, 5303, 5399, 5449, 5623, 5683, 5839, 6079, 6229, 6301, 6361, 6451, 6949, 7253, 7351, 7477, 7537, 7589, 7673
Offset: 1
2 is a term since its block of 9 primes is
| 2 | 3 | 5 |
| 7 | 11 | 13 |
| 17 | 19 | 23 |
which has among its lines (3 + 11 + 19) = (17 + 11 + 5).
67 is a term since its block of 9 primes (the 3rd block) is 67..103,
| 67 | 71 | 73 |
| 79 | 83 | 89 |
| 97 | 101| 103|
which has 67+83+103 = 97+83+73.
Subsequence of
A031918 (by definition).
-
a = {}
row = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};
col = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
dia = {{1, 3}, {5, 5}, {9, 7}};
Duplicates[l_] :=
Block[{i}, i[n_] := (i[n] = n; Unevaluated@Sequence[]); i /@ l]
Do[If[Duplicates[
Flatten[{Total[Prime[row + 9 n]], Total[Prime[col + 9 n]],
Total[Prime[dia + 9 n]]}]] != {},
AppendTo[a, Prime[9 n + 1]]], {n, 0, 110}]
a (* Gerry Martens, Nov 12 2022 *)
Showing 1-2 of 2 results.
Comments