cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031923 Let r and s be consecutive Fibonacci numbers. Sequence is r^4, r^3 s, r^2 s^2, and r s^3.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, 375, 625, 1000, 1600, 2560, 4096, 6656, 10816, 17576, 28561, 46137, 74529, 120393, 194481, 314874, 509796, 825384, 1336336, 2161720, 3496900, 5656750, 9150625, 14807375, 23961025, 38773295, 62742241, 101515536
Offset: 1

Views

Author

Keywords

Comments

Two consecutive Fibonacci numbers are coprime. This sequence satisfies a 14th-order linear difference equation. Note that it is the fourth sequence in the sequences that begin with the Fibonacci numbers, A006498, and A006500. Subsequent sequences will have orders 22, 32, and 44. - T. D. Noe, Mar 05 2012
Also the number of subsets of the set {1,2,...,n-1} which do not contain two elements whose difference is 4. - David Nacin, Mar 07 2012

Examples

			Since F_5 = 5 and F_6 = 8 are consecutive Fibonacci numbers, 8^4 = 4096, 8^3*5 = 2560, 8^2*5^2 = 1600, 8*5^3 = 1000, and 5^4 = 625 are in the sequence.
The number 3^3*8 = 216 is not in the sequence since 3 and 8 are not consecutive.
If n = 6 then this gives the number of subsets of {1,...,5} not containing both 1 and 5. There are 2^3 subsets containing 1 and 5, giving us 2^5 - 2^3 = 24. Thus a(5) = 24. - _David Nacin_, Mar 07 2012
		

Crossrefs

Programs

  • Maple
    A031923 := proc(n)
        local n0,i,r,s,m ;
        n0 := n-1 ;
        i := floor(n0/4) ;
        r := combinat[fibonacci](i+2) ;
        s := combinat[fibonacci](i+3) ;
        m := modp(n0,4) ;
        r^(4-m)*s^m ;
    end proc:
    seq(A031923(n),n=1..50) ; # R. J. Mathar, Jan 23 2022
  • Mathematica
    f = Fibonacci[Range[12]]; m = Most[f]; r = Rest[f]; Union[m^4, m^3 r, m^2 r^2, m r^3] (* T. D. Noe, Mar 05 2012 *)
    LinearRecurrence[{1, 1, 0, -2, 2, 2, 0, 2, -2, -2, 0, 1, -1, -1}, {1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, 375, 625, 1000}, 40] (* T. D. Noe, Mar 05 2012 *)
    Table[Fibonacci[Floor[n/4] + 3]^Mod[n, 4]*Fibonacci[Floor[n/4] + 2]^(4 - Mod[n, 4]), {n, 0, 40}] (* David Nacin, Mar 07 2012 *)
    cfn[{a_,b_}]:={a^4,a^3 b,a^2 b^2,a b^3}; Flatten[cfn/@Partition[ Fibonacci[ Range[20]],2,1]]//Union (* Harvey P. Dale, Feb 03 2019 *)
  • PARI
    for(m=2,10,r=fibonacci(m);s=fibonacci(m+1);print(r^4," ",r^3*s," ",r^2*s^2," ",r*s^3)) \\ Michael B. Porter, Mar 04 2012
    
  • Python
    def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:4, 6:15, 7:37, 8:87, 9:200}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1)-2*a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-2*a(n-6)-4*a(n-7)-a(n-8)+a(n-9)+2*a(n-10)
        return adict[n] # David Nacin, Mar 07 2012

Formula

a(n) = F(floor((n-1)/4) + 3)^(n-1 mod 4)*F(floor((n-1)/4) + 2)^(4 - (n-1 mod 4)) where F(n) is the n-th Fibonacci number. - David Nacin, Mar 07 2012
a(n) = a(n-1) + a(n-2) - 2*a(n-4) + 2*a(n-5) + 2*a(n-6) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + a(n-12) - a(n-13) - a(n-14). - David Nacin, Mar 07 2012
G.f.: x*(2 + 2*x + 2*x^2 + 4*x^3 + 4*x^4 - 2*x^6 - 1*x^7 - 4*x^8 - 3*x^9 - x^10 - x^11 - 2*x^12 - x^13)/((1 - x)*(1 + x)*(1 + x^2)*(1 - x - x^2)*(1 + 3*x^4 + x^8)). - David Nacin, Mar 08 2012
a(4*k-3) = F(k+1)^4, a(4*k-2) = F(k+1)^3*F(k+2), a(4*k-1) = F(k+1)^2*F(k+2)^2, a(4*k) = F(k+1)*F(k+2)^3, k >= 1, where F = A000045. - Jianing Song, Feb 06 2019
a(4n+1)= A056571(n+2). a(4n+3)=A197424(n). - R. J. Mathar, Jan 23 2022

Extensions

a(19) changed from 10416 to 10816 by David Nacin, Mar 04 2012