Original entry on oeis.org
1, 21, 56, 0, 42, 0, 0, 48
Offset: 1
- H. Ferguson and C. Ferguson, Eightfold way: the sculpture, pp. 133-173 in S. Levy, ed., The Eightfold Way, Cambridge, 1999.
A145437
a(n) = number of elements of order n in simple group Alt(12) of order 239500800.
Original entry on oeis.org
1, 63855, 776600, 3825360, 4809024, 25530120, 570240, 29937600, 26611200, 25945920, 43545600, 21621600, 0, 8553600, 6652800, 0, 0, 0, 0, 11975040, 11404800, 0, 0, 0, 0, 0, 0, 0, 0, 3991680, 0, 0, 0, 0, 13685760
Offset: 1
A145822
a(n) = number of elements of order n in simple group Alt(11) of order 19958400.
Original entry on oeis.org
1, 18315, 142010, 457380, 809424, 2044350, 237600, 2494800, 2217600, 498960, 3628800, 2910600, 0, 712800, 887040, 0, 0, 0, 0, 997920, 1900800
Offset: 1
A086859
a(n) = number of elements of order n in simple group L_2(8) of order 504.
Original entry on oeis.org
1, 63, 56, 0, 0, 0, 216, 0, 168
Offset: 1
A102578
a(n) = number of elements of order n in simple group Alt(6) = L_2(9) of order 360.
Original entry on oeis.org
1, 45, 80, 90, 144
Offset: 1
A145752
a(n) = number of elements of order n in simple group Alt(7) of order 2520.
Original entry on oeis.org
1, 105, 350, 630, 504, 210, 720
Offset: 1
A145753
a(n) = number of elements of order n in simple group Alt(8) of order 20160.
Original entry on oeis.org
1, 315, 1232, 3780, 1344, 5040, 5760, 0, 0, 0, 0, 0, 0, 0, 2688
Offset: 1
A145754
a(n) = number of elements of order n in simple group Alt(9) of order 181440.
Original entry on oeis.org
1, 1323, 5768, 18900, 3024, 37800, 25920, 0, 40320, 9072, 0, 15120, 0, 0, 24192
Offset: 1
A145770
a(n) = number of elements of order n in simple group Alt(10) of order 1814400.
Original entry on oeis.org
1, 5355, 31040, 94500, 78624, 201600, 86400, 226800, 403200, 90720, 0, 302400, 0, 0, 120960, 0, 0, 0, 0, 0, 172800
Offset: 1
A335384
Order of the finite groups GL(m,q) [or GL_m(q)] in increasing order as q runs through the prime powers.
Original entry on oeis.org
6, 48, 168, 180, 480, 2016, 3528, 5760, 11232, 13200, 20160, 26208, 61200, 78336, 123120, 181440, 267168, 374400, 511056, 682080, 892800, 1014816, 1488000, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 9999360, 11908560, 13615200, 16511040, 19845936, 24261120, 25048800, 28003968
Offset: 1
a(1) = #GL(2,2) = (2^2-1)*(2^2-2) = 3*2 = 6 and the 6 elements of GL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 invertible matrices with entries in F_2:
(1 0) (1 1) (1 0) (0 1) (0 1) (1 1)
(0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(2) = #GL(2,3) = (3^2-1)*(3^2-3) = 8*6 = 48.
a(3) = #GL(3,2) = (2^3-1)*(2^3-2)*(2^3-2^2) = 168.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- Daniel Perrin, Cours d'Algèbre, Maths Agreg, Ellipses, 1996, pages 95-115.
Cf.
A002884 [GL(m,2)],
A053290 [GL(m,3)],
A053291 [GL(m,4)],
A053292 [GL(m,5)],
A053293 [GL(m,7)],
A052496 [GL(m,8)],
A052497 [GL(m,9)],
A052498 [GL(m,11)].
Showing 1-10 of 11 results.
Comments