cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A145719 Erroneous version of A031963.

Original entry on oeis.org

1, 21, 56, 0, 42, 0, 0, 48
Offset: 1

Views

Author

Keywords

References

  • H. Ferguson and C. Ferguson, Eightfold way: the sculpture, pp. 133-173 in S. Levy, ed., The Eightfold Way, Cambridge, 1999.

A145437 a(n) = number of elements of order n in simple group Alt(12) of order 239500800.

Original entry on oeis.org

1, 63855, 776600, 3825360, 4809024, 25530120, 570240, 29937600, 26611200, 25945920, 43545600, 21621600, 0, 8553600, 6652800, 0, 0, 0, 0, 11975040, 11404800, 0, 0, 0, 0, 0, 0, 0, 0, 3991680, 0, 0, 0, 0, 13685760
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

A row of A057740. Cf. A031963.

Programs

  • Magma
    t1:=[0 : n in [1..240]];
    G:=Alt(12);
    t2:=Classes(G);
    for c in t2 do
    t1[c[1]] := t1[c[1]] + c[2];
    end for;
    t1;

A145822 a(n) = number of elements of order n in simple group Alt(11) of order 19958400.

Original entry on oeis.org

1, 18315, 142010, 457380, 809424, 2044350, 237600, 2494800, 2217600, 498960, 3628800, 2910600, 0, 712800, 887040, 0, 0, 0, 0, 997920, 1900800
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

A row of A057740. Cf. A031963.

A086859 a(n) = number of elements of order n in simple group L_2(8) of order 504.

Original entry on oeis.org

1, 63, 56, 0, 0, 0, 216, 0, 168
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

Cf. A031963.

A102578 a(n) = number of elements of order n in simple group Alt(6) = L_2(9) of order 360.

Original entry on oeis.org

1, 45, 80, 90, 144
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

Cf. A031963. A row of A057740.

A145752 a(n) = number of elements of order n in simple group Alt(7) of order 2520.

Original entry on oeis.org

1, 105, 350, 630, 504, 210, 720
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

A row of A057740. Cf. A031963.

A145753 a(n) = number of elements of order n in simple group Alt(8) of order 20160.

Original entry on oeis.org

1, 315, 1232, 3780, 1344, 5040, 5760, 0, 0, 0, 0, 0, 0, 0, 2688
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

A row of A057740. Cf. A031963.

A145754 a(n) = number of elements of order n in simple group Alt(9) of order 181440.

Original entry on oeis.org

1, 1323, 5768, 18900, 3024, 37800, 25920, 0, 40320, 9072, 0, 15120, 0, 0, 24192
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

A row of A057740. Cf. A031963.

A145770 a(n) = number of elements of order n in simple group Alt(10) of order 1814400.

Original entry on oeis.org

1, 5355, 31040, 94500, 78624, 201600, 86400, 226800, 403200, 90720, 0, 302400, 0, 0, 120960, 0, 0, 0, 0, 0, 172800
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2009

Keywords

Crossrefs

A row of A057740. Cf. A031963.

A335384 Order of the finite groups GL(m,q) [or GL_m(q)] in increasing order as q runs through the prime powers.

Original entry on oeis.org

6, 48, 168, 180, 480, 2016, 3528, 5760, 11232, 13200, 20160, 26208, 61200, 78336, 123120, 181440, 267168, 374400, 511056, 682080, 892800, 1014816, 1488000, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 9999360, 11908560, 13615200, 16511040, 19845936, 24261120, 25048800, 28003968
Offset: 1

Views

Author

Bernard Schott, Jun 04 2020

Keywords

Comments

GL(m,q) is the general linear group, the group of invertible m X m matrices over the finite field F_q with q = p^k elements.
By definition, all fields must contain at least two distinct elements, so q >= 2. As GL(1,q) is isomorphic to F_q*, the multiplicative group [whose order is p^k-1 (A181062)] of finite field F_q, data begins with m >= 2.
Some isomorphisms (let "==" denote "isomorphic to"):
a(1) = 6 for GL(2,2) == PSL(2,2) == S_3.
a(2) = 48 for GL(2,3) that has 55 subgroups.
a(3) = 168 for GL(3,2) == PSL(2,7) [A031963].
a(11) = 20160 for GL(4,2) == PSL(4,2) == Alt(8).
Array for order of GL(m,q) begins:
=============================================================
m\q | 2 3 4=2^2 5 7
-------------------------------------------------------------
2 | 6 48 180 480 2016
3 | 168 11232 181440 1488000 33784128
4 | 20160 24261120 2961100800 116064000000 #GL(4,7)
5 |9999360 #GL(5,3) ... ... ...

Examples

			a(1) = #GL(2,2) = (2^2-1)*(2^2-2) = 3*2 = 6 and the 6 elements of GL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 invertible matrices with entries in F_2:
  (1 0)   (1 1)   (1 0)   (0 1)   (0 1)   (1 1)
  (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(2) = #GL(2,3) = (3^2-1)*(3^2-3) = 8*6 = 48.
a(3) = #GL(3,2) = (2^3-1)*(2^3-2)*(2^3-2^2) = 168.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • Daniel Perrin, Cours d'Algèbre, Maths Agreg, Ellipses, 1996, pages 95-115.

Crossrefs

Cf. A059238 [GL(2,q)].
Cf. A002884 [GL(m,2)], A053290 [GL(m,3)], A053291 [GL(m,4)], A053292 [GL(m,5)], A053293 [GL(m,7)], A052496 [GL(m,8)], A052497 [GL(m,9)], A052498 [GL(m,11)].
Cf. A316622 [GL(n,Z_k)].

Formula

#GL(m,q) = Product_{k=0..m-1}(q^m-q^k).
Showing 1-10 of 11 results. Next