A031982 a(n) = 1(01)^(2*n+1).
101, 1010101, 10101010101, 101010101010101, 1010101010101010101, 10101010101010101010101, 101010101010101010101010101, 1010101010101010101010101010101, 10101010101010101010101010101010101, 101010101010101010101010101010101010101, 1010101010101010101010101010101010101010101
Offset: 0
References
- C. Ashbacher, Problem 514, The Pentagon, Vol. 57, No. 1, Fall 1997, p. 36.
- M. Le, On Smarandache Pierce Chain, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 154-155.
- Florentin Smarandache, Properties of the numbers, ASU Special Collections, 1973.
Links
- Eric Weisstein's World of Mathematics, Smarandache Sequences.
- Index entries for linear recurrences with constant coefficients, signature (10001,-10000).
Programs
-
Mathematica
101(10^(4Range[10]) - 1)/9999 (* Alonso del Arte, May 20 2017 *) LinearRecurrence[{10001,-10000},{101,1010101},20] (* Harvey P. Dale, Aug 18 2019 *)
-
PARI
my(x='x+O('x^11)); Vec(101/((1-x)*(1-10000*x))) \\ Elmo R. Oliveira, Jun 12 2025
Formula
a(n) = 101*(10^(4*n) - 1)/(10^4 - 1).
From Elmo R. Oliveira, Jun 12 2025: (Start)
G.f.: 101/((x-1)*(10000*x-1)).
E.g.f.: 101*exp(x)*(exp(9999*x) - 1)/9999.
a(n) = 10001*a(n-1) - 10000*a(n-2). (End)
Extensions
More terms from James Sellers
a(9)-a(10) from Elmo R. Oliveira, Jun 12 2025