A032011 Partition n labeled elements into sets of different sizes and order the sets.
1, 1, 1, 7, 9, 31, 403, 757, 2873, 12607, 333051, 761377, 3699435, 16383121, 108710085, 4855474267, 13594184793, 76375572751, 388660153867, 2504206435681, 20148774553859, 1556349601444477, 5050276538344665, 33326552998257031, 186169293932977115, 1305062351972825281, 9600936552132048553, 106019265737746665727, 12708226588208611056333, 47376365554715905155127
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..670
- C. G. Bower, Transforms (2)
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1)*binomial(n,i)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..30); # Alois P. Heinz, Sep 02 2015 -
Mathematica
f[list_]:=Apply[Multinomial,list]*Length[list]!; Table[Total[Map[f, Select[IntegerPartitions[n], Sort[#] == Union[#] &]]], {n, 1, 30}] b[n_, i_, p_] := b[n, i, p] = If[i*(i+1)/2
n, 0, b[n-i, i-1, p+1]*Binomial[n, i]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *) -
PARI
seq(n)=[subst(serlaplace(y^0*p),y,1) | p <- Vec(serlaplace(prod(k=1, n, 1 + x^k*y/k! + O(x*x^n))))] \\ Andrew Howroyd, Sep 13 2018
Formula
"AGJ" (ordered, elements, labeled) transform of 1, 1, 1, 1, ...
a(n) = Sum_{k>=0} k! * A131632(n,k). - Alois P. Heinz, Sep 09 2015
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 02 2015
Comments