A032013 Number of ways to partition n labeled elements into sets of different sizes of at least 2 and order the sets.
1, 0, 1, 1, 1, 21, 31, 113, 169, 8053, 15871, 71325, 300147, 816401, 63105953, 161203747, 856049593, 4050514725, 25570388671, 80377109117, 12126315199099, 36747628912981, 233849676829957, 1239662165799711, 8321234529548651, 59953576690379081
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..673
- C. G. Bower, Transforms (2)
Crossrefs
Cf. A032011.
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<2, 0, b(n, i-1, p)+ `if`(i>n, 0, b(n-i, i-1, p+1)*binomial(n, i)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 2, 0, b[n, i - 1, p] + If[i > n, 0, b[n - i, i - 1, p + 1]*Binomial[n, i]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 27 2017, after Alois P. Heinz *)
-
PARI
seq(n)=[subst(serlaplace(y^0*p),y,1) | p <- Vec(serlaplace(prod(k=2, n, 1 + x^k*y/k! + O(x*x^n))))] \\ Andrew Howroyd, Sep 13 2018
Formula
"AGJ" (ordered, elements, labeled) transform of 0, 1, 1, 1...
Extensions
a(0)=1 prepended by Alois P. Heinz, May 11 2016