cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032021 Number of compositions (ordered partitions) of n into distinct odd parts.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 2, 1, 4, 7, 4, 7, 6, 13, 6, 19, 32, 25, 32, 31, 58, 43, 82, 49, 132, 181, 156, 193, 230, 325, 278, 457, 376, 715, 448, 967, 1290, 1345, 1386, 1723, 2276, 2341, 3116, 2959, 4750, 3823, 6358, 4681, 9480, 10945, 11832, 12169, 16442, 18793, 21002, 25537, 27820, 37687
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
           ->x+y, b(n, i-2), [0, `if`(i>n, [], b(n-i, i-2))[]], 0)))
        end:
    a:= proc(n) local l; l:= b(n, n-1+irem(n, 2));
          a(n):= add(l[i]*(i-1)!, i=1..nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    b[n_, i_] := If[n == 0, {1}, If[i<1, {}, Plus @@ PadRight[{b[n, i-2], Join[{0}, If[i>n, {}, b[n-i, i-2]]]}]]]; a[n_] := Module[{l}, l = b[n, n-1+Mod[n, 2]]; Sum[l[[i]]*(i-1)!, {i, 1, Length[l]}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N);
    gf=sum(k=0,N, k! * q^(k^2) / prod(j=1,k, 1-q^(2*j) ) );
    Vec(gf)
    /* Joerg Arndt, Sep 17 2012 */

Formula

"AGK" (ordered, elements, unlabeled) transform of 1, 0, 1, 0...(odds)
G.f.: sum(k>=0, k! * x^(k^2) / prod(j=1..k, 1-x^(2*j) ) ). - Vladeta Jovovic, Aug 05 2004

Extensions

Prepended a(0)=1, Joerg Arndt, Oct 20 2012