cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032022 Number of compositions (ordered partitions) of n into distinct parts >= 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 3, 5, 5, 13, 13, 21, 27, 35, 65, 79, 109, 147, 207, 245, 449, 517, 745, 957, 1335, 1691, 2237, 3463, 4273, 5787, 7611, 10109, 13061, 17413, 21493, 32853, 39627, 53675, 68321, 91663, 114997, 152811, 192063, 245885, 346649, 428869, 557305
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A032020.

Programs

  • Maple
    b:= proc(n, i) option remember; local s; s:= i*(i+1)/2-1;
         `if`(n=0, [1], `if`(i<2 or n>s, [], zip((x, y)->x+y,
          b(n, i-1), [0, `if`(i>n, [], b(n-i, i-1))[]], 0)))
        end:
    a:= proc(n) option remember; local l; l:= b(n$2);
          add(l[i]*(i-1)!, i=1..nops(l))
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = With[{s = i*(i+1)/2-1}, If[n == 0, {1}, If[i<2 || n>s, {}, zip[ b[n, i-1], Join[{0}, If[i>n, {}, b[n-i, i - 1]]]]]]]; a[n_] := a[n] = Module[{l = b[n, n]}, Sum[l[[i]]*(i-1)!, {i, 1, Length[l]}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 13 2017, after Alois P. Heinz *)

Formula

"AGK" (ordered, elements, unlabeled) transform of 0, 1, 1, 1...
G.f.: sum(i>=0, i! * x^((i^2+3*i)/2) / prod(j=1..i, 1-x^j ) ). - Vladeta Jovovic, May 21 2006

Extensions

Prepended a(0)=1, Joerg Arndt, Oct 20 2012