cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032087 Number of reversible strings with n beads of 4 colors. If more than 1 bead, not palindromic.

Original entry on oeis.org

4, 6, 24, 120, 480, 2016, 8064, 32640, 130560, 523776, 2095104, 8386560, 33546240, 134209536, 536838144, 2147450880, 8589803520, 34359607296, 137438429184, 549755289600, 2199021158400, 8796090925056, 35184363700224, 140737479966720, 562949919866880
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jun 30 2018: (Start)
Using the formulae in C. G. Bower's web link below about transforms, it can be proved that, for k >= 2, the BHK[k] transform of sequence (c(n): n >= 1), which has g.f. C(x) = Sum_{n >= 1} c(n)*x^n, has generating function B_k(x) = (1/2)*(C(x)^k - C(x^2)^{k/2}) if k is even, and B_k(x) = C(x)*B_{k-1}(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. For k=1, Bower assumes that the BHK[k=1] transform of (c(n): n >= 1) is itself, which means that the g.f. of the output sequence is C(x). (This assumption is not accepted by all mathematicians because a sequence of length 1 is not only reversible but palindromic as well.)
Since a(m) = BHK(c(n): n >= 1)(m) = Sum_{k=1..m} BHK[k](c(n): n >= 1)(m) for m = 1,2,3,..., it can be easily proved (using sums of infinite geometric series) that the g.f. of BHK(c(n): n >= 1) is A(x) = (C(x)^2 - C(x^2))/(2*(1-C(x))*(1-C(x^2))) + C(x). (The extra C(x) is due of course to the special assumption made for the BHK[k=1] transform.)
Here, BHK(c(n): n >= 1)(m) indicates the m-th element of the output sequence when the transform is BHK and the input sequence is (c(n): n >= 1). Similarly, BHK[k](c(n): n >= 1)(m) indicates the m-th element of the output sequence when the transform is BHK[k] (i.e., with k boxes) and the input sequence is (c(n): n >= 1).
For the current sequence, c(1) = 4, and c(n) = 0 for all n >= 2, and thus, C(x) = 4*x. Substituting into the above formula for A(x), and doing the algebra, we get A(x) = 2*x*(2-5*x-8*x^2+32*x^3) / ((1+2*x)*(1-2*x)*(1-4*x)), which is R. J. Mathar's formula below.
(End)
The formula for a(n) for this sequence was Ralf Stephan's conjecture 72. It was solved by Elizabeth Wilmer (see Proposition 1 in one of the links below). She does not accept Bower's assertion that a string of length 1 is not palindromic. - Petros Hadjicostas, Jul 05 2018

Crossrefs

Column 4 of A293500 for n>1.
Cf. A000302, A026337 (bisection), A032121, A056450, A088037.

Programs

  • Magma
    A032087:= func< n | n eq 1 select 4 else 2^(2*n-1) -(3-(-1)^n)*2^(n-2) >;
    [A032087(n): n in [1..30]]; // G. C. Greubel, Oct 02 2024
    
  • Mathematica
    Join[{4}, LinearRecurrence[{4, 4, -16}, {6, 24, 120}, 24]] (* Jean-François Alcover, Oct 11 2017 *)
  • PARI
    Vec(2*x*(2 - 5*x - 8*x^2 + 32*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 08 2017
    
  • SageMath
    def A032087(n): return 2^(2*n-1) -3*2^(n-2) +(-2)^(n-2) +4*int(n==1)
    [A032087(n) for n in range(1,31)] # G. C. Greubel, Oct 02 2024

Formula

"BHK" (reversible, identity, unlabeled) transform of 4, 0, 0, 0, ...
a(2*n+1) = 2^(4*n+1) - 2^(2*n+1), a(2*n) = 2^(4*n-1) - 2^(2*n) + 2^(2*n-1), a(1)=4.
a(n) = (A000302(n) - A056450(n))/2 for n > 1.
From R. J. Mathar, Mar 20 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) for n > 4.
G.f.: 2*x*(2-5*x-8*x^2+32*x^3)/((1-2*x)*(1+2*x)*(1-4*x)). (End)
From Colin Barker, Mar 08 2017: (Start)
a(n) = 2^(n-1) * (2^n-1) for n > 1 and even.
a(n) = 2^(2*n-1) - 2^n for n > 1 and odd. (End)
E.g.f.: (1/4)*( exp(-2*x) - 3*exp(2*x) + 2*exp(4*x) ) + 4*x. - G. C. Greubel, Oct 02 2024