A032087 Number of reversible strings with n beads of 4 colors. If more than 1 bead, not palindromic.
4, 6, 24, 120, 480, 2016, 8064, 32640, 130560, 523776, 2095104, 8386560, 33546240, 134209536, 536838144, 2147450880, 8589803520, 34359607296, 137438429184, 549755289600, 2199021158400, 8796090925056, 35184363700224, 140737479966720, 562949919866880
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- C. G. Bower, Transforms (2)
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Elizabeth Wilmer, Notes on Stephan's conjectures 72, 73 and 74
- Elizabeth Wilmer, Notes on Stephan's conjectures 72, 73 and 74 [cached copy]
- Index entries for linear recurrences with constant coefficients, signature (4,4,-16).
Programs
-
Magma
A032087:= func< n | n eq 1 select 4 else 2^(2*n-1) -(3-(-1)^n)*2^(n-2) >; [A032087(n): n in [1..30]]; // G. C. Greubel, Oct 02 2024
-
Mathematica
Join[{4}, LinearRecurrence[{4, 4, -16}, {6, 24, 120}, 24]] (* Jean-François Alcover, Oct 11 2017 *)
-
PARI
Vec(2*x*(2 - 5*x - 8*x^2 + 32*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 08 2017
-
SageMath
def A032087(n): return 2^(2*n-1) -3*2^(n-2) +(-2)^(n-2) +4*int(n==1) [A032087(n) for n in range(1,31)] # G. C. Greubel, Oct 02 2024
Formula
"BHK" (reversible, identity, unlabeled) transform of 4, 0, 0, 0, ...
a(2*n+1) = 2^(4*n+1) - 2^(2*n+1), a(2*n) = 2^(4*n-1) - 2^(2*n) + 2^(2*n-1), a(1)=4.
From R. J. Mathar, Mar 20 2009: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) for n > 4.
G.f.: 2*x*(2-5*x-8*x^2+32*x^3)/((1-2*x)*(1+2*x)*(1-4*x)). (End)
From Colin Barker, Mar 08 2017: (Start)
a(n) = 2^(n-1) * (2^n-1) for n > 1 and even.
a(n) = 2^(2*n-1) - 2^n for n > 1 and odd. (End)
E.g.f.: (1/4)*( exp(-2*x) - 3*exp(2*x) + 2*exp(4*x) ) + 4*x. - G. C. Greubel, Oct 02 2024
Comments