A032093 Number of reversible strings with n-1 beads of 2 colors. 6 beads are black. Strings are not palindromic.
3, 12, 40, 100, 226, 452, 848, 1484, 2485, 3976, 6160, 9240, 13524, 19320, 27072, 37224, 50391, 67188, 88440, 114972, 147862, 188188, 237328, 296660, 367913, 452816, 553504, 672112, 811240, 973488, 1161984, 1379856
Offset: 8
Keywords
Examples
From _Petros Hadjicostas_, May 19 2018: (Start) For n=8, we have the following 3 reversible non-palindromic compositions with 7 parts of n: 1+1+1+1+1+1+2 (= 2+1+1+1+1+1+1), 1+1+1+1+1+2+1 (= 1+2+1+1+1+1+1), and 1+1+1+1+2+1+1 (= 1+1+2+1+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 6 black balls and n-7=1 white balls: BBBBBBW (= WBBBBBB), BBBBBWB (= BWBBBBB), and BBBBWBB (= BBWBBBB). For n=9, we get the following 12 compositions and 12 corresponding strings: 1+1+1+1+1+1+3 <-> BBBBBBWW 1+1+1+1+1+3+1 <-> BBBBBWWB 1+1+1+1+3+1+1 <-> BBBBWWBB 1+1+1+1+1+2+2 <-> BBBBBWBW 1+1+1+1+2+1+2 <-> BBBBWBBW 1+1+1+2+1+1+2 <-> BBBWBBBW 1+1+2+1+1+1+2 <-> BBWBBBBW 1+2+1+1+1+1+2 <-> BWBBBBBW 1+1+1+1+2+2+1 <-> BBBBWBWB 1+1+1+2+1+2+1 <-> BBBWBBWB 1+1+2+1+1+2+1 <-> BBWBBBWB 1+1+1+2+2+1+1 <-> BBBWBWBB (End)
Links
- C. G. Bower, Transforms (2)
- Index entries for linear recurrences with constant coefficients, signature (4, -3, -8, 14, 0, -14, 8, 3, -4, 1).
Formula
"BHK[ 7 ]" (reversible, identity, unlabeled, 7 parts) transform of 1, 1, 1, 1, ...
Empirical G.f.: -x^8*(x^2+3)/((x-1)^7*(x+1)^3). - Colin Barker, Nov 24 2012
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-7) - binomial(floor((n-1)/2), floor((n-7)/2))) for n >= 8.
G.f.: (1/2)*(x/(1-x))*((x/(1-x))^6 - (x^2/(1-x^2))^3), which is the same as the g.f. given by Colin Barker above.
(End)
Extensions
Definition changed slightly by Harvey P. Dale, Oct 02 2017
Comments