cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032123 Number of 2n-bead black-white reversible strings with n black beads.

Original entry on oeis.org

1, 1, 4, 10, 38, 126, 472, 1716, 6470, 24310, 92504, 352716, 1352540, 5200300, 20060016, 77558760, 300546630, 1166803110, 4537591960, 17672631900, 68923356788, 269128937220, 1052049834576, 4116715363800, 16123803193628, 63205303218876, 247959271674352, 973469712824056
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n) is also the number of quivers in the mutation class of affine B_n or affine type C_n for n>=2. [Christian Stump, Nov 02 2010]

Crossrefs

Central column of Losanitsch's triangle A034851.
Cf. A002458 (bisection).

Programs

  • Mathematica
    With[{nn = 50}, CoefficientList[Series[Exp[x]*Cosh[x]*BesselI[0, 2*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 15 2017 *)

Formula

a(2n+1) = binomial(4n+1,2n) = A002458(n). a(2n) = binomial(4n-1,2n-1)+binomial(2n-1,n-1), n>0.
"BIK[ n ](2n-1)" (reversible, indistinct, unlabeled, n parts, 2n-1 elements) transform of 1, 1, 1, 1...
E.g.f.: exp(x)*cosh(x)*BesselI(0, 2*x). - Vladeta Jovovic, Apr 07 2005
G.f.: (1/2)*((1-4*x)^(-1/2)+(1-4*x^2)^(-1/2)). - Mark van Hoeij, Oct 30 2011
Conjecture: D-finite with recurrence n*(n-1)*a(n) -2*(n-1)*(3*n-4)*a(n-1) +4*(2*n^2-14*n+19)*a(n-2) +8*(n^2+5*n-19)*a(n-3) -16*(n-3)*(3*n-10)*a(n-4) +32*(n-4)*(2*n-9)*a(n-5)=0, n>5. - R. J. Mathar, Nov 09 2013
a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2014