A032123 Number of 2n-bead black-white reversible strings with n black beads.
1, 1, 4, 10, 38, 126, 472, 1716, 6470, 24310, 92504, 352716, 1352540, 5200300, 20060016, 77558760, 300546630, 1166803110, 4537591960, 17672631900, 68923356788, 269128937220, 1052049834576, 4116715363800, 16123803193628, 63205303218876, 247959271674352, 973469712824056
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- C. G. Bower, Transforms (2)
- N. J. A. Sloane, Classic Sequences
Programs
-
Mathematica
With[{nn = 50}, CoefficientList[Series[Exp[x]*Cosh[x]*BesselI[0, 2*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 15 2017 *)
Formula
a(2n+1) = binomial(4n+1,2n) = A002458(n). a(2n) = binomial(4n-1,2n-1)+binomial(2n-1,n-1), n>0.
"BIK[ n ](2n-1)" (reversible, indistinct, unlabeled, n parts, 2n-1 elements) transform of 1, 1, 1, 1...
E.g.f.: exp(x)*cosh(x)*BesselI(0, 2*x). - Vladeta Jovovic, Apr 07 2005
G.f.: (1/2)*((1-4*x)^(-1/2)+(1-4*x^2)^(-1/2)). - Mark van Hoeij, Oct 30 2011
Conjecture: D-finite with recurrence n*(n-1)*a(n) -2*(n-1)*(3*n-4)*a(n-1) +4*(2*n^2-14*n+19)*a(n-2) +8*(n^2+5*n-19)*a(n-3) -16*(n-3)*(3*n-10)*a(n-4) +32*(n-4)*(2*n-9)*a(n-5)=0, n>5. - R. J. Mathar, Nov 09 2013
a(n) ~ 2^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2014
Comments