cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032131 Shifts left 2 places under the "BIK" (reversible, indistinct, unlabeled) transform with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 13, 31, 66, 160, 369, 907, 2191, 5461, 13558, 34209, 86426, 220359, 563475, 1449282, 3739365, 9688104, 25173917, 65621067, 171498288, 449361649, 1180078602, 3105740797, 8189749105, 21636207962, 57257857968, 151771200002, 402899862910, 1071076810324, 2851165864937
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jan 14 2018: (Start)
For this sequence, if (b(n): n>=1) = BIK((a(n): n>=1)), then b(n) = a(n+2) for n>=1.
Let A(x) = Sum_{n>=1} a(n)*x^n be the g.f. for this sequence. For an explanation on how to derive the formula BIK(A(x)) = (1/2)*(A(x)/(1-A(x)) + (A(x) + A(x^2))/(1 - A(x^2))) from Bower's formulae in the link below about transforms, see the comments for sequence A001224. (For that sequence, the roles of sequences (a(n): n>=1) and (b(n): n>=1) are reversed.)
(End)

Crossrefs

Programs

  • Mathematica
    m = 36; a[1] = a[2] = 1; A[_] = 0;
    Do[A[x_] = x^2 (a[1]/x + a[2] + (1/2)(A[x]/(1 - A[x]) + (A[x] + A[x^2])/(1 - A[x^2]))) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Sep 17 2019 *)
  • PARI
    BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
    seq(n)={my(p=1+O(x^(n%2)));for(i=1, n\2, p=1+x*BIK(x*p)); Vec(p)} \\ Andrew Howroyd, Aug 30 2018

Formula

From Petros Hadjicostas, Jan 14 2018: (Start)
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then (A(x) - a(1)*x - a(2)*x^2)/x^2 = BIK(A(x)) = (1/2)*(A(x)/(1-A(x)) + (A(x) + A(x^2))/(1-A(x^2))). Here, a(1) = a(2) = 1.
In general, we have:
a(3) = a(1),
a(4) = (1/2)*(a(1)^2 + a(1) + 2*a(2)),
a(5) = (1/2)*(a(1)^2 + a(1) + 2*a(2) + 2)*a(1),
a(6) = (1/2)*(a(1)^4 + 4*a(1)^2 + (3*a(1)^2 + a(1) + 3)*a(2) + a(2)^2 + a(1)),
a(7) = (1/2)*(a(1)^4 + 4*a(1)^2*a(2) + 6*a(1)^2 + 3*a(2)^2 + 3*a(1) + 7*a(2) + 2)*a(1),
and so on. No pattern is apparent here.
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 14 2018
a(31)-a(35) from Petros Hadjicostas, Jan 14 2018