A032131 Shifts left 2 places under the "BIK" (reversible, indistinct, unlabeled) transform with a(1) = a(2) = 1.
1, 1, 1, 2, 3, 7, 13, 31, 66, 160, 369, 907, 2191, 5461, 13558, 34209, 86426, 220359, 563475, 1449282, 3739365, 9688104, 25173917, 65621067, 171498288, 449361649, 1180078602, 3105740797, 8189749105, 21636207962, 57257857968, 151771200002, 402899862910, 1071076810324, 2851165864937
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
Programs
-
Mathematica
m = 36; a[1] = a[2] = 1; A[_] = 0; Do[A[x_] = x^2 (a[1]/x + a[2] + (1/2)(A[x]/(1 - A[x]) + (A[x] + A[x^2])/(1 - A[x^2]))) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Sep 17 2019 *)
-
PARI
BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2} seq(n)={my(p=1+O(x^(n%2)));for(i=1, n\2, p=1+x*BIK(x*p)); Vec(p)} \\ Andrew Howroyd, Aug 30 2018
Formula
From Petros Hadjicostas, Jan 14 2018: (Start)
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then (A(x) - a(1)*x - a(2)*x^2)/x^2 = BIK(A(x)) = (1/2)*(A(x)/(1-A(x)) + (A(x) + A(x^2))/(1-A(x^2))). Here, a(1) = a(2) = 1.
In general, we have:
a(3) = a(1),
a(4) = (1/2)*(a(1)^2 + a(1) + 2*a(2)),
a(5) = (1/2)*(a(1)^2 + a(1) + 2*a(2) + 2)*a(1),
a(6) = (1/2)*(a(1)^4 + 4*a(1)^2 + (3*a(1)^2 + a(1) + 3)*a(2) + a(2)^2 + a(1)),
a(7) = (1/2)*(a(1)^4 + 4*a(1)^2*a(2) + 6*a(1)^2 + 3*a(2)^2 + 3*a(1) + 7*a(2) + 2)*a(1),
and so on. No pattern is apparent here.
(End)
Extensions
Name edited by Petros Hadjicostas, Jan 14 2018
a(31)-a(35) from Petros Hadjicostas, Jan 14 2018
Comments