A322913 Inverse Moebius transform of the sequence (n*A032173(n+2): n >= 1).
1, 3, 7, 15, 36, 81, 197, 455, 1105, 2618, 6315, 15141, 36570, 88161, 213342, 516247, 1251728, 3037059, 7378290, 17938430, 43655465, 106317863, 259127707, 631986437, 1542364386, 3766351332, 9202390342, 22496047757, 55020807236, 134631987776, 329579227722, 807142635031
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
Programs
-
Mathematica
(* b = A032173 *) b[1] = b[2] = 1; c[1] = 1; c[2] = 3; b[n_] := b[n] = 1/(n-2) Sum[MoebiusMu[(n-2)/d] c[d], {d, Divisors[n-2]}]; c[n_] := c[n] = n b[n] + Sum[c[s] b[n-s], {s, 1, n-1}]; a[n_] := Sum[d b[d+2], {d, Divisors[n]}]; Array[a, 26] (* Jean-François Alcover, Jan 02 2019 *)
-
PARI
CHK(p, n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))} seq(n)={my(p=1+O(x)); for(i=1, n\2, p=1+x+x*CHK(x*p, 2*i)); Vec(deriv(x*p)/(1-x*p)+O(x^n))} \\ Andrew Howroyd, Apr 27 2020
Formula
Extensions
Terms a(27) and beyond from Andrew Howroyd, Apr 27 2020
Comments