cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A322913 Inverse Moebius transform of the sequence (n*A032173(n+2): n >= 1).

Original entry on oeis.org

1, 3, 7, 15, 36, 81, 197, 455, 1105, 2618, 6315, 15141, 36570, 88161, 213342, 516247, 1251728, 3037059, 7378290, 17938430, 43655465, 106317863, 259127707, 631986437, 1542364386, 3766351332, 9202390342, 22496047757, 55020807236, 134631987776, 329579227722, 807142635031
Offset: 1

Views

Author

Petros Hadjicostas, Dec 30 2018

Keywords

Comments

The sequence (A032173(n): n >= 1) shifts two places to the left under Bower's "CHK" (necklace, identity, unlabeled) transform. The current sequence satisfies A032173(n+2) = (1/n)*Sum_{d|n} mu(d)*a(n/d).

Crossrefs

Programs

  • Mathematica
    (* b = A032173 *) b[1] = b[2] = 1; c[1] = 1; c[2] = 3;
    b[n_] := b[n] = 1/(n-2) Sum[MoebiusMu[(n-2)/d] c[d], {d, Divisors[n-2]}];
    c[n_] := c[n] = n b[n] + Sum[c[s] b[n-s], {s, 1, n-1}];
    a[n_] := Sum[d b[d+2], {d, Divisors[n]}];
    Array[a, 26] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    CHK(p, n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=1+O(x)); for(i=1, n\2, p=1+x+x*CHK(x*p, 2*i)); Vec(deriv(x*p)/(1-x*p)+O(x^n))} \\ Andrew Howroyd, Apr 27 2020

Formula

a(n) = Sum_{d|n} d*A032173(d+2).
a(n) = n*A032173(n) + Sum_{s=1..n-1} a(s)*A032173(n-s).
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n and B(x) = Sum_{n>=1} A032173(n)*x^n, then A(x) = x*(dB(x)/dx)/(1-B(x)), while (B(x) - x - x^2)/x^2 = Sum_{n>=1} A032173(n+2)*x^n = -Sum_{n>=1} (mu(n)/n)*log(1-B(x^n)).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Apr 27 2020
Showing 1-1 of 1 results.