cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032175 Number of connected functions of n points with no symmetries.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 42, 91, 208, 470, 1089, 2509, 5869, 13730, 32371, 76510, 181708, 432635, 1033656, 2475384, 5943395, 14299532, 34475030, 83263872, 201441431, 488092897, 1184353643, 2877611984, 7000359244, 17049288304, 41568056484, 101449503960, 247828380511
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, n, add(g(n-k)*add(g(d)*d*
           (-1)^(k/d+1), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g(n)+b(n, n-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, May 19 2022
  • Mathematica
    g[n_] := g[n] = If[n < 2, n, Sum[g[n - k]*Sum[g[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1)];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[j - 1 - a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := g[n] + b[n, n - 1];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
  • PARI
    \\ here IdTreeGf is g.f. of A004111.
    IdTreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={Vec(CHK(IdTreeGf(n), n))} \\ Andrew Howroyd, Aug 31 2018

Formula

"CHK" (necklace, identity, unlabeled) transform of A004111.