A032175 Number of connected functions of n points with no symmetries.
1, 1, 2, 4, 9, 18, 42, 91, 208, 470, 1089, 2509, 5869, 13730, 32371, 76510, 181708, 432635, 1033656, 2475384, 5943395, 14299532, 34475030, 83263872, 201441431, 488092897, 1184353643, 2877611984, 7000359244, 17049288304, 41568056484, 101449503960, 247828380511
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2503 (first 500 terms from Andrew Howroyd)
- C. G. Bower, Transforms (2)
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, n, add(g(n-k)*add(g(d)*d* (-1)^(k/d+1), d=numtheory[divisors](k)), k=1..n-1)/(n-1)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> g(n)+b(n, n-1): seq(a(n), n=1..40); # Alois P. Heinz, May 19 2022
-
Mathematica
g[n_] := g[n] = If[n < 2, n, Sum[g[n - k]*Sum[g[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[j - 1 - a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := g[n] + b[n, n - 1]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
-
PARI
\\ here IdTreeGf is g.f. of A004111. IdTreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d*A[d]) * A[n-k+1] ) ); x*Ser(A)} CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))} seq(n)={Vec(CHK(IdTreeGf(n), n))} \\ Andrew Howroyd, Aug 31 2018
Formula
"CHK" (necklace, identity, unlabeled) transform of A004111.