A032190 Number of cyclic compositions of n into parts >= 2.
0, 1, 1, 2, 2, 4, 4, 7, 9, 14, 18, 30, 40, 63, 93, 142, 210, 328, 492, 765, 1169, 1810, 2786, 4340, 6712, 10461, 16273, 25414, 39650, 62074, 97108, 152287, 238837, 375166, 589526, 927554, 1459960, 2300347, 3626241, 5721044, 9030450, 14264308, 22542396
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
- C. G. Bower, Transforms (2)
- Daryl DeFord, Enumerating distinct chessboard tilings, Fibonacci Quart. 52 (2014), 102-116; see formula (5.3) in Theorem 5.2, p. 111.
- Benjamin Hackl and Helmut Prodinger, The Necklace Process: A Generating Function Approach, arXiv:1801.09934 [math.PR], 2018.
- Benjamin Hackl and Helmut Prodinger, The Necklace Process: A Generating Function Approach, Statistics and Probability Letters 142 (2018), 57-61.
- P. Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 764
- Index entries for sequences related to necklaces
Programs
-
Maple
# formula (5.3) of Daryl Deford for "Number of distinct Lucas tilings of a 1 X n # bracelet up to symmetry" in "Enumerating distinct chessboard tilings" A032190 := proc(n) local a,i,d ; a := 0 ; for i from 0 to ceil((n-1)/2) do for d in numtheory[divisors](i) do if modp(igcd(i,n-i),d) = 0 then a := a+(numtheory[phi](d)*binomial((n-i)/d,i/d))/(n-i) ; end if; end do: end do: a ; end proc: seq(A032190(n),n=1..60) ; # R. J. Mathar, Nov 27 2014
-
Mathematica
nn=40;Apply[Plus,Table[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^(2i)/(1-x^i),{i,1,n}],{x,0,nn}],x],{n,1,nn/2}]] (* Geoffrey Critzer, Aug 10 2013 *) A032190[n_] := Module[{a=0, i, d, j, dd}, For[i=1, i <= Ceiling[(n-1)/2], i++, For[dd = Divisors[i]; j=1, j <= Length[dd], j++, d=dd[[j]]; If[Mod[GCD[i, n-i], d] == 0, a = a + (EulerPhi[d]*Binomial[(n-i)/d, i/d])/(n-i)]]]; a]; Table[A032190[n], {n, 1, 60}] (* Jean-François Alcover, Nov 27 2014, after R. J. Mathar *)
Formula
"CIK" (necklace, indistinct, unlabeled) transform of 0, 1, 1, 1...
From Petros Hadjicostas, Sep 10 2017: (Start)
For all the formulas below, assume n >= 1. Here, phi(n) = A000010(n) is Euler's totient function.
a(n) = (1/n) * Sum_{d|n} b(d)*phi(n/d), where b(n) = A001610(n-1).
a(n) = (1/n) * Sum_{d|n} phi(n/d)*(Fibonacci(d-1) + Fibonacci(d+1) - 1) (because of the equation a(n) = A000358(n) - 1 stated in the CROSSREFS section below).
G.f.: -x/(1-x) + Sum_{k>=1} phi(k)/k * log(1/(1-B(x^k))) where B(x) = x*(1+x). (This is a modification of a formula due to Joerg Arndt.)
G.f.: Sum_{k>=1} phi(k)/k * log((1-x^k)/(1-B(x^k))), which agrees with the one in the Encyclopedia of Combinatorial Structures, #764, above. (We have Sum_{n>=1} (phi(n)/n)*log(1-x^n) = -x/(1-x), which follows from the Lambert series Sum_{n>=1} phi(n)*x^n/(1-x^n) = x/(1-x)^2.)
Sum_{d|n} a(d)*d = n*Sum_{d|n} b(d)/d, where b(n) = A001610(n-1).
(End)
a(n) = Sum_{1 <= i <= ceiling((n-1)/2)} [ (1/(n - i)) * Sum_{d|gcd(i, n-i)} phi(d) * binomial((n - i)/d, i/d) ]. (This is a slight variation of DeFord's formula for the number of distinct Lucas tilings of a 1 X n bracelet up to symmetry, where we exclude the case with i = 0 dominoes.) - Petros Hadjicostas, Jun 07 2019
Extensions
Better name from Geoffrey Critzer, Aug 10 2013
Comments