A032192 Number of necklaces with 7 black beads and n-7 white beads.
1, 1, 4, 12, 30, 66, 132, 246, 429, 715, 1144, 1768, 2652, 3876, 5538, 7752, 10659, 14421, 19228, 25300, 32890, 42288, 53820, 67860, 84825, 105183, 129456, 158224, 192130, 231880, 278256, 332112, 394383, 466089, 548340
Offset: 7
Keywords
Links
- C. G. Bower, Transforms (2)
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025. See p. 19.
- Mónica A. Reyes, Cristina Dalfó, Miguel Àngel Fiol, and Arnau Messegué, A general method to find the spectrum and eigenspaces of the k-token of a cycle, and 2-token through continuous fractions, arXiv:2403.20148 [math.CO], 2024. See pp. 5-6.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1,1,-6,15,-20,15,-6,1).
Programs
-
Mathematica
k = 7; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *) DeleteCases[CoefficientList[Series[x^7 (x^6 - 5 x^5 + 13 x^4 - 17 x^3 + 13 x^2 - 5 x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) (1 - x)^7), {x, 0, 41}], x], 0] (* Michael De Vlieger, Oct 10 2016 *)
Formula
Empirically this is ceiling(C(n, 7)/n). - N. J. A. Sloane
G.f.: x^7*(x^6 - 5*x^5 + 13*x^4 - 17*x^3 + 13*x^2 - 5*x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(1 - x)^7). - Gael Linder (linder.gael(AT)wanadoo.fr), Jan 13 2005
G.f.: (6/(1 - x^7) + 1/(1 - x)^7)*x^7/7; in general, for a necklace with p black beads and p prime, the g.f. is ((p-1)/(1 - x^p) + 1/(1 - x)^p)*x^p/p. - Herbert Kociemba, Oct 15 2016
a(n) = ceiling(binomial(n, 7)/n) (conjecture by Wolfdieter Lang).
a(n) = (6/7)*I(7|n) + (1/7)*C(n-1,6) = (6/7)*I(7|n) + (1/n)*C(n,7), where I(condition) = 1 if the condition holds, and = 0 otherwise. - Petros Hadjicostas, Dec 08 2017
Comments