A032200 Number of rooted compound windmills (mobiles) of n nodes.
1, 1, 2, 4, 9, 20, 51, 128, 345, 940, 2632, 7450, 21434, 62174, 182146, 537369, 1596133, 4767379, 14312919, 43162856, 130695821, 397184252, 1211057426, 3703794849, 11358759346, 34923477315, 107627138308, 332404636811
Offset: 1
Examples
From _Gus Wiseman_, Sep 05 2018: (Start) The a(5) = 9 locally necklace plane trees: ((((o)))) (((oo))) ((o(o))) (o((o))) ((o)(o)) ((ooo)) (o(oo)) (oo(o)) (oooo) (End)
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2)
- Index entries for sequences related to mobiles
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; neckplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[neckplane/@c],neckQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[neckplane[n]],{n,10}] (* Gus Wiseman, Sep 05 2018 *)
-
PARI
CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))} seq(n)={my(p=O(1));for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018
Formula
Shifts left under "CIK" (necklace, indistinct, unlabeled) transform.
Comments